Электрической станцией называется комплекс оборудования, предназначенного для преобразования энергии какого-либо
природного источника
в электричество или тепло. Разновидностей подобных объектов существует несколько. К примеру, часто для получения электричества и тепла используются ТЭС.
Определение
ТЭС — это э
лектростанция, применяющая в качестве источника энергии какое-либо органическое топливо. В качестве последнего может использоваться, к примеру, нефть, газ, уголь. На настоящий момент тепловые комплексы являются самым распространенным видом электростанций в мире. Объясняется популярность ТЭС прежде всего доступностью органического топлива. Нефть, газ и уголь имеются во многих уголках планеты.
ТЭС — это (расшифровка с
амой аббревиатуры выглядит как “тепловая электростанция”), помимо всего прочего, комплекс с довольно-таки высоким КПД. В зависимости от вида используемых турбин этот показатель на станциях подобного типа может быть равен 30 – 70%.
Мнение эксперта:
Эксперты отмечают, что основные принципы работы тэс включают в себя тщательный анализ ключевых слов и запросов, оптимизацию контента под поисковые системы, а также построение качественных обратных ссылок. Они подчеркивают, что для успешной работы тэс необходимо постоянно отслеживать изменения алгоритмов поисковых систем и адаптировать стратегию SEO под них. Кроме того, эксперты считают важным учитывать пользовательский опыт и создавать уникальный, ценный контент, который будет соответствовать запросам аудитории.
Какие существуют разновидности ТЭС
Классифицироваться станции этого типа могут по двум основным признакам:
- назначению;
- типу установок.
В первом случае различают ГРЭС и ТЭЦ.
ГРЭС — это станция, работающая за счет вращения турбины под мощным напором струи пара. Расшифровка аббревиатуры ГРЭС — государственная районная электростанция — в настоящий момент утратила актуальность. Поэтому часто такие комплексы называют также КЭС. Данная аббревиатура расшифровывается как “конденсационная электростанция”.
ТЭЦ — это также довольно-таки распространенный вид ТЭС. В отличие от ГРЭС, такие станции оснащаются не конденсационными, а теплофикационными турбинами. Расшифровывается ТЭЦ как “теплоэнергоцентраль”.
Помимо конденсационных и теплофикационных установок (паротурбинных), на ТЭС могут использоваться следующие типы оборудования:
- парогазовые.
Интересные факты
- ТЭЦ – это самый эффективный способ производства электроэнергии.ТЭЦ вырабатывают электроэнергию и тепло одновременно, что позволяет использовать топливо более эффективно, чем при раздельном производстве электроэнергии и тепла.
- ТЭЦ могут работать на различных видах топлива.ТЭЦ могут работать на угле, газе, мазуте, биомассе и других видах топлива. Это делает их более гибкими и позволяет использовать наиболее доступное топливо в данный момент.
- ТЭЦ играют важную роль в обеспечении надежности энергоснабжения.ТЭЦ могут быстро запускаться и останавливаться, что позволяет им реагировать на изменения спроса на электроэнергию. Кроме того, ТЭЦ могут работать в режиме когенерации, что позволяет им вырабатывать электроэнергию и тепло одновременно, что повышает надежность энергоснабжения.
ТЭС и ТЭЦ: различия
Часто люди путают эти два понятия. ТЭЦ, по сути, как мы выяснили, является одной из разновидностей ТЭС. Отличается такая станция от других типов ТЭС прежде всего тем, что
часть вырабатываемой ею тепловой энергии идет на бойлеры, установленные в помещениях для их обогрева или же для получения горячей воды.
Также люди часто путают названия ГЭС и ГРЭС. Связано это прежде всего со сходством аббревиатур. Однако ГЭС принципиально отличается от ГРЭС. Оба этих вида станций возводятся на реках. Однако на ГЭС, в отличие от ГРЭС, в качестве источника энергии используется не пар, а непосредственно сам водяной поток.
Опыт других людей
Какие тэс – это компания, о которой говорят многие довольные клиенты. Основные принципы работы компании включают в себя профессионализм, индивидуальный подход к каждому клиенту и использование передовых технологий. Люди отмечают высокое качество услуг и оперативность в выполнении задач. Клиенты высоко оценивают компанию за надежность и прозрачность во всех вопросах. Какие тэс – это надежный партнер, на которого можно положиться.
Какие предъявляются требования к ТЭС
ТЭС — это тепловая электрическая станция, на которой выработка электроэнергии и ее потребление производятся одномоментно. Поэтому такой комплекс должен полностью соответствовать ряду экономических и технологических требований. Это обеспечит бесперебойное и надежное обеспечение потребителей электроэнергией. Так:
- помещения ТЭС должны иметь хорошее освещение, вентиляцию и аэрацию;
- должна быть обеспечена защита воздуха внутри станции и вокруг нее от загрязнения твердыми частицами, азотом, оксидом серы и т. д.;
- источники водоснабжения следует тщательно защищать от попадания в них сточных вод ;
- системы водоподготовки на станциях следует обустраивать
безотходные.
Принцип работы ТЭС
ТЭС — это электростанция
, на которой могут использоваться турбины
разного типа
. Далее рассмотрим принцип работы ТЭС на примере одного из самых распространенных ее типов — ТЭЦ. Осуществляется выработка энергии на таких станциях в несколько этапов:
Топливо и окислитель поступают в котел. В качестве первого в России обычно используется угольная пыль. Иногда топливом ТЭЦ могут служить также торф, мазут, уголь, горючие сланцы, газ. Окислителем в
данном случае
выступает подогретый воздух.
Образовавшийся в результате сжигания топлива в котле пар поступает в турбину. Назначением последней является преобразование энергии пара в механическую.
Вращающиеся валы турбины передают энергию на валы генератора, преобразующего ее в электрическую.
Охлажденный и потерявший часть энергии в турбине пар поступает в конденсатор.
Здесь он превращается в воду, которая подается через подогреватели в деаэратор.
Деаэрированная вода подогревается и подается в котел.
Преимущества ТЭС
ТЭС — это,
таким образом, станция, основным типом оборудования на которой являются турбины и генераторы. К плюсам таких комплексов относят в первую очередь:
- дешевизну возведения в сравнении с большинством других видов электростанций;
- дешевизну используемого топлива;
- невысокую стоимость выработки электроэнергии.
Также большим плюсом таких станций считается то, что построены они могут быть в любом нужном месте, вне зависимости от наличия топлива. Уголь, мазут и т. д. могут транспортироваться на станцию автомобильным или железнодорожным транспортом.
Еще одним преимуществом ТЭС является то, что они занимают очень малую площадь в сравнении с другими типами станций.
Недостатки ТЭС
Разумеется, есть у таких станций не только преимущества. Имеется у них и ряд недостатков. ТЭС — это
комплексы, к сожалению, очень сильно загрязняющие окружающую среду. Станции этого типа могут выбрасывать в воздух просто огромное количество копоти и дыма. Также к минусам ТЭС относят высокие в сравнении с ГЭС эксплуатационные расходы. К тому же все виды используемого на таких станциях топлива относятся к невосполнимым природным ресурсам.
Какие еще виды ТЭС существуют
Помимо паротурбинных ТЭЦ и КЭС (ГРЭС), на территории России работают станции:
Газотурбинные (ГТЭС). В данном случае турбины вращаются не от пара, а на природном газу. Также в качестве топлива на таких станциях могут использоваться мазут или солярка. КПД таких станций, к сожалению, не слишком высок (27 – 29%). Поэтому используют их в основном только как резервные источники электроэнергии или же предназначенные для подачи напряжения в сеть небольших населенных пунктов.
Парогазотурбинные (ПГЭС). КПД таких комбинированных станций составляет примерно 41 – 44%. Передают энергию на генератор в системах этого типа одновременно турбины и газовые, и паровые. Как и ТЭЦ, ПГЭС могут использоваться не только для собственно выработки электроэнергии, но и для отопления зданий или же обеспечения потребителей горячей водой.
Примеры станций
Итак, достаточно производительным и в какой-то мере даже универсальным объектом может считаться люба
я ТЭС, электростанция. Примеры
таких комплексов представляем в списке ниже.
Белгородская ТЭЦ. Мощность этой станции составляет 60 МВт. Турбины ее работают на природном газе.
Мичуринская ТЭЦ (60 МВт). Этот объект также расположен в Белгородской области и работает на природном газе.
Череповецкая ГРЭС. Комплекс находится в Волгоградской области и может работать как на газу, так и на угле. Мощность этой станции равна целых 1051 МВт.
Липецкая ТЭЦ -2 (515 МВТ). Работает на природном газе.
ТЭЦ-26 «Мосэнерго» (1800 МВт).
Черепетская ГРЭС (1735 Мвт). Источником топлива для турбин этого комплекса служит уголь.
Вместо заключения
Таким образом, мы выяснили, что представляют собой тепловые электростанции и какие существуют разновидности подобных объектов. Впервые комплекс этого типа был построен очень давно — в 1882 году в Нью-Йорке. Через год такая система заработала в России — в Санкт-Петербурге. Сегодня ТЭС —
это
разновидность электростанций, на долю которых приходится порядка 75% всей вырабатываемой в мире электроэнергии. И по всей видимости, несмотря на ряд минусов, станции этого типа еще долго будут обеспечивать население электроэнергией и теплом. Ведь достоинств у таких комплексов на порядок больше, чем недостатков.
Climate Analytics продолжает настаивать на том, что угольная энергетика в Европе должна быть ликвидирована уже к 2030 году – иначе ЕС не выполнит целей
Парижского соглашения
по климату. Но какие станции закрывать в первую очередь? Предлагается два подхода – экологический и экономический.
«Кислород.ЛАЙФ»присмотрелся к крупнейшим угольным ТЭС в России, которые никто закрывать не собирается.
Закрыть за десять лет
Climate Analytics продолжает настаивать , что для достижения целей Парижского соглашения по климату странам ЕС придется закрыть практически все действующие угольные ТЭС. Энергетический сектор Европы нуждается в тотальной декарбонизации, поскольку значительная часть общего объема выбросов парниковых газов (ПГ) в ЕС формируется в угольной энергетике. Поэтому постепенный отказ от угля в этой отрасли является одним из самых рентабельных методов сокращения эмиссии ПГ, также такие действия обеспечат значительные преимущества с точки зрения качества воздуха, здоровья населения и энергетической безопасности.
Сейчас в ЕС – более 300 электростанций с действующими на них 738 энергоблоками, работающими на угольном топливе. Географически они распределены, естественно, не равномерно. Но в целом каменный уголь и лигнит (бурый уголь) обеспечивают четверть всей генерации электричества в ЕС. Самые зависимые от угля члены Евросоюза – Польша, Германия, Болгария, Чехия и Румыния. На долю Германии и Польши приходится 51% установленных угольных мощностей в ЕС и 54% выбросов ПГ от угольной энергетики во всей объединенной Европе. При этом в семи странах ЕС вообще нет угольных ТЭС.
«Дальнейшее использование угля для производства электроэнергии не совместимо с реализацией задачи резкого снижения выбросов ПГ. Поэтому ЕС необходимо разработать стратегию поэтапного отказа от угля быстрее, чем это происходит в настоящее время», – резюмирует Climate Analytics. В противном случае, совокупные объемы выбросов к 2050 году по всему ЕС вырастут на 85%. Моделирование, проведенное Climate Analytics, показало, что 25% работающих в настоящее время угольных электростанций должны быть закрыты уже к 2020 году. Еще через пять лет закрыть необходимо 72% ТЭС, а полностью избавиться от угольной энергетики к 2030 году.
Главные вопрос – как это делать? По мнению Climate Analytics, «критический вопрос – по каким критериям нужно определять, когда закрывать те или иные ТЭС? С точки зрения земной атмосферы, критерии не имеют значения, так как выбросы ПГ будут сокращаться в нужном темпе. Но с точки зрения политиков, владельцев предприятий и других заинтересованных сторон, выработка таких критериев – решающий момент в принятии решений».
Climate Analytics предлагает две возможные стратегии для полного отказа от использования угля в производстве электроэнергии. Первая – сначала закрывать те ТЭС, которые лидируют по выбросам ПГ. Вторая стратегия – закрывать станции, наименее ценные с точки зрения бизнеса. Для каждой из стратегий нарисована интересная инфографика, показывающая, как будет меняться облик ЕС в годами вслед за закрытием угольных станций. В первом случае под ударом окажутся Польша, Чехия, Болгария и Дания. Во втором – также Польша и Дания.
Единства нет
Climate Analytics также по всем 300 станциям проставил годы закрытия в соответствии с двумя стратегиями. Нетрудно заметить, что эти годы существенно расходятся со сроками работы этих станций в обычном режиме (т.н. BAU – businnes as usual). Например, крупнейшая в Европе станция Белхатов в Польше (мощность более 4,9 ГВт) может работать как минимум до 2055 года; тогда как ее предлагается закрыть уже к 2027 году – одинаковый срок при любом сценарии.
В целом именно пять польских ТЭС, которые могут спокойно дымит до 2060-х годов, Climate Analytics предлагает закрыть на три-четыре десятилетия
раньше срока
. Польшу, энергетика которой на 80% зависит от угля, такое развитие событий вряд ли устроит (напомним, эта страна даже собирается оспаривать климатические обязательства, навязанные ей ЕС, в суде). Еще пять станций из Топ-20 находятся в Великобритании; восемь – в Германии. Также в первой двадцатке на закрытие – две ТЭС в Италии.
При этом английская Fiddler”s Ferry (мощность 2 ГВт) должна быть закрыта уже в 2017 году, а остальные британские ТЭС, как и заявляло правительство этой страны – к 2025 году. То есть только в этой стране процесс может пройти относительно безболезненно. В Германии все может растянуться до 2030 года, реализация двух стратегий будет различаться в зависимости от специфики земель (там есть угледобывающие регионы). В Чехии и Болгарии угольную генерацию нужно будет свернуть уже к 2020 году – прежде всего, из-за солидных объемов выбросов.
На замену углю должны прийти ВИЭ. Снижение себестоимости генерации солнца и ветра – важный тренд, который необходимо поддерживать и развивать, считают в Climate Analytics. За счет ВИЭ можно провести трансформацию энергетики, в том числе путем создания новых рабочих мест (не только в самой отрасли, но и в производстве оборудования). Которые, в том числе, смогут занять и высвобождаемые из угольной энергетики кадры.
Впрочем, в Climate Analytics признают, что в Европе нет единства в отношении угля. В то время как некоторые страны значительно сократили добычу и заявили о полном отказе от этого вида топлива в ближайшие 10-15 лет (среди них, например, Великобритания, Финляндия и Франция), другие или строят, или планируют строить новые угольные электростанции (Польша и Греция). «Вопросам экологии в Европе уделяют большое внимание, однако быстро отказаться от угольной генерации вряд ли будет возможно. Сначала необходимо ввести в строй замещающие мощности, ведь тепло и свет нужны и населению, и экономике. Это тем более важно, что ранее принимались решения о закрытии ряда
атомных электростанций
в Европе. Возникнут социальные проблемы, потребуется переобучить часть сотрудников самих станций, будет сокращено значительное количество рабочих мест в самых разных отраслях, что, безусловно, увеличит напряженность в обществе. Скажется закрытие угольных электростанций и на бюджетах, так как не станет значительной группы налогоплательщиков, а операционные показатели тех компаний, кто ранее им поставлял товары и услуги, существенно уменьшатся. Если какое-то решение и возможно, то заключаться оно может в растянутом по времени отказе от угольной генерации, с одновременным продолжением работы по совершенствованию технологий с целью уменьшения выбросов от сжигания угля, улучшения экологической ситуации на угольных электростанциях», – говорит по этому поводу
Дмитрий Баранов, ведущий эксперт УК «Финам Менеджмент».
Top-20 угольных ТЭС Европы, которые, по мнению Climate Analytics, нужно будет закрыть
А что у нас?
Доля тепловой генерации в структуре выработки электроэнергии в России составляет более 64%, в структуре установленной мощности станций ЕЭС – более 67%. Однако в ТОП-10 крупнейших ТЭС страны только две станции работают на угле – Рефтинская и Рязанская; в основном же тепловая энергетика в России – газовая. «В России одна из лучших структур топливного баланса в мире. Мы используем всего 15% угля для производства энергии. В среднем по миру этот показатель составляет 30-35%. В Китае – 72%, в США и ФРГ – 40%. Задачу сократить долю не углеродных источников до 30% активно решают и в Европе. В России эта программа, фактически, уже реализована», – заявил глава Минэнерго РФ
Александр Новак, выступая в конце февраля на панельной сессии «Зеленая экономика как вектор развития» в рамках Российского Инвестиционного форума-2017 в Сочи.
Доля атомной энергетики в общем объеме энергобаланса страны – 16-17%, гидрогенерации – 18%, на газ приходится порядка 40%. По данным Института энергетических исследований РАН, уголь в производстве электроэнергии давно и активно вытесняется газом и атомом, причем быстрее всего – в европейской части России. Крупнейшие угольные ТЭС расположены, тем не менее, в центре и на Урале. Но если посмотреть на картину в энергетике в разрезе регионов, а не отдельных станций, то картинка будет другая: наиболее «угольные» регионы – в Сибири и на Дальнем Востоке. Структура территориальных энергобалансов зависит от уровня газификации: в европейской части России он высокий, а в
Восточной Сибири
и далее – низкий. Уголь в качестве топлива, как правило, используется на городских ТЭЦ, где вырабатывается не только электричество, но и тепло. Поэтому генерация в больших городах (вроде Красноярска) полностью основана на угольном топливе. В целом на долю тепловых станций только в ОЭС Сибири в настоящее время приходится 60% выработки электроэнергии – это порядка 25 ГВт «угольных»мощностей.
Что касается ВИЭ, то сейчас на долю таких источников в энергобалансе РФ приходится символические 0,2%. «Планируем выйти на 3% – до 6 тысяч МВт за счет различных механизмов поддержки», – дал прогноз Новак. В компании «Россети» дают более оптимистичные прогнозы : установленная мощность ВИЭ к 2030 году в России может вырасти на 10 ГВт. Тем не менее, глобальной перестройки энергобаланса в нашей стране не предвидится. «По прогнозам, к 2050 году в мире будет насчитываться порядка 10 миллиардов человек. Уже сегодня порядка 2 миллиардов не имеют доступа к источникам энергии. Представьте, какая будет потребность человечества в энергии через 33 года, и как должны развиться ВИЭ, чтобы обеспечить весь спрос», – так доказывает жизнеспособность традиционной энергетики Александр Новак.
«Речь об «отказе от угля» в России точно не идет, тем более что, согласно Энергостратегии до 2035 года, запланировано увеличение доли угля в энергобалансе страны, – напоминает
Дмитрий Барановиз УК «Финам Менеджмент». – Наряду с нефтью и газом, уголь является одним из важнейших полезных ископаемых на планете, и Россия, как одна из крупнейших стран в мире по его запасам и добыче, просто обязана уделять должное внимание развитию этой отрасли. Еще в 2014 году на заседании правительства РФ Новак представил программу развития угольной промышленности России до 2030 года. В ней основной упор сделан на создание новых центров угледобычи, в первую очередь, в Сибири и на Дальнем Востоке, совершенствование научно-технического потенциала в отрасли, а также реализацию проектов в углехимии».
Крупнейшие ТЭС России, работающие на угольном топливе
Рефтинская ГРЭС («Энел Россия»)
Является самой крупной угольной ТЭС в России (и второй в топ-10 тепловых станций страны). Расположена в Свердловской области, в 100 км северо-восточнее Екатеринбурга и в 18 км от Асбеста.
Установленная электрическая мощность – 3800 МВт.
Установленная тепловая мощность – 350 Гкал/ч.
Обеспечивает энергоснабжение промышленных районов Свердловской, Тюменской, Пермской и Челябинской областей.
Строительство электростанции началось в 1963 году, в 1970 состоялся пуск первого энергоблока, в 1980 – последнего.
Рязанская ГРЭС (ОГК-2)
Пятая в топ-10 крупнейших тепловых станций России. Работает на угле (первая очередь) и природном газе (вторая очередь). Расположена в Новомичуринске (Рязанская область), к 80 км южнее от Рязани.
Установленная электрическая мощность (вместе с ГРЭС-24) – 3 130 МВт.
Установленная тепловая мощность – 180 Гкал/час.
Строительство началось в 1968 году. Первый энергоблок введен в эксплуатацию 1973 году, последний – 31 декабря 1981 года.
Новочеркасская ГРЭС (ОГК-2)
Расположена в микрорайоне Донской в Новочеркасске (Ростовская область),в 53 км на юго-восток от Ростова-на-Дону. Работает на газе и угле. Единственная ТЭС в России, использующая местные отходы добычи угля и углеобогащения – антрацитовый штыб.
Установленная электрическая мощность – 2229 МВт.
Установленная тепловая мощность – 75 Гкал/час.
Строительство началось в 1956 году. Первый энергоблок введен в эксплуатацию в 1965 году, последний – восьмой – в 1972 году.
Каширская ГРЭС («ИнтерРАО»)
Расположена в Кашире (Московская область).
Работает на угле и природном газе.
Установленная электрическая мощность – 1910 МВт.
Установленная тепловая мощность – 458 Гкал/ч.
Введена в эксплуатацию в 1922 году по плану ГОЭЛРО. В 1960-е годы на станции была проведена масштабная модернизация.
Пылеугольные энергоблоки №1 и №2 планируется вывести из эксплуатацию в 2019 году. К 2020 году такая же судьба ждет еще четыре энергоблока, работающих на газомазутном топливе. В работе останется только самый современный блок №3 мощностью 300 МВт.
Приморская ГРЭС (РАО «ЭС Востока»)
Расположена в Лучегорске (Приморский край).
Самая мощная ТЭС на Дальнем Востоке. Работает на угле Лучегорского угольного разреза. Обеспечивает
большую часть
энергопотребления Приморья.
Установленная электрическая мощность – 1467 МВт.
Установленная тепловая мощность – 237 Гкал/час.
Первый энергоблок станции был введён в эксплуатацию в 1974 году, последний в 1990-м. ГРЭС расположена практически «на борту» угольного разреза – больше нигде в России электростанция не строилась в столь непосредственной близости от источника топлива.
Троицкая ГРЭС (ОГК-2)
Расположена в Троицке (Челябинская область). Выгодно расположена в промышленном треугольнике Екатеринбург – Челябинск – Магнитогорск.
Установленная электрическая мощность – 1 400 МВт.
Установленная тепловая мощность – 515 Гкал/час.
Пуск первой очереди станции состоялся в 1960 году. Оборудование второй очереди (на 1200 МВт) было выведено из эксплуатации в 1992-2016 годы.
В 2016 году введен в эксплуатацию уникальный пылеугольный энергоблок №10 мощностью 660 МВт.
Гусиноозерская ГРЭС («ИнтерРАО»)
Расположена в Гусиноозерске (Республика Бурятия), обеспечивает электроэнергией потребителей Бурятии и соседних регионов. Основным топливом для станции является бурый уголь Окино-Ключевского разреза и Гусиноозёрского месторождения.
Установленная электрическая мощность – 1160 МВт.
Установленная тепловая мощность – 224,5 Гкал/ч.
Четыре энергоблока первой очереди введены в эксплуатацию с 1976 по 1979 годы. Ввод второй очереди начался в 1988 году запуском энергоблока №5.
В1879 г., когда
Томас Алва Эдисонизобрел лампу накаливания, началась эра электрификации. Для производства больших количеств электроэнергии требовалось дешевое и легкодоступное топливо. Этим требованиям удовлетворял каменный уголь, и первые электростанции (построенные в конце XIX в. самим Эдисоном) работали на угле.
По мере того как в стране строилось все больше и больше станций, зависимость от угля возрастала. Начиная с первой мировой войны примерно половина ежегодного производства электроэнергии в США приходилась на тепловые электростанции, работающие на каменном угле. В 1986 г. общая установленная мощность таких электростанций составила 289000 МВт, и они потребляли 75% всего количества (900 млн. т) добываемого в стране угля. Учитывая существующие неопределенности в отношении перспектив развития ядерной энергетики и роста добычи нефти и природного газа, можно предположить, что к концу века тепловые станции на угольном топливе будут производить до 70% всей вырабатываемой в стране электроэнергии.
Однако, несмотря на то что уголь долгое время был и еще многие годы будет основным источником получения электроэнергии (в США на его долю приходится около 80% запасов всех видов природных топлив), он никогда не был оптимальным топливом для электростанций. Удельное содержание энергии на единицу веса (т. е. теплотворная способность) у угля ниже, чем у нефти или природного газа. Его труднее транспортировать, и, кроме того, сжигание угля вызывает целый ряд нежелательных экологических последствий, в частности выпадение кислотных дождей. С конца 60-х годов привлекательность тепловых станций на угле резко пошла на убыль в связи с ужесточением требований к загрязнению среды газообразными и твердыми выбросами в виде золы и шлаков. Расходы на решение этих экологических проблем наряду с возрастающей стоимостью строительства таких сложных объектов, какими являются тепловые электростанции, сделали менее благоприятными перспективы их развития с чисто экономической точки зрения.
Однако, если изменить технологическую базу тепловых станций на угольном топливе, их былая привлекательность может возродиться. Некоторые из этих изменений носят эволюционный характер и нацелены главным образом на увеличение мощности
существующих установок
. Вместе с тем разрабатываются совершенно новые процессы безотходного сжигания угля, т. е. с минимальным ущербом для окружающей среды. Внедрение новых
технологических процессов
направлено на то, чтобы будущие тепловые электростанции на угольном топливе поддавались эффективному контролю на степень загрязнения ими окружающей среды, обладали гибкостью с точки зрения возможности использования
различных видов
угля и не требовали больших сроков строительства.
Для того чтобы оценить значение достижений в технологии сжигания угля, рассмотрим кратко работу обычной тепловой электростанции на угольном топливе. Уголь сжигается в топке парового котла, представляющего собой огромную камеру с трубами внутри, в которых вода превращается в пар. Перед подачей в топку уголь измельчается в пыль, за счет чего достигается почти такая же полнота сгорания, как и при сжигании горючих газов. Крупный паровой котел потребляет ежечасно в среднем 500 т пылевидного угля и генерирует 2,9 млн. кг пара, что достаточно для производства 1 млн. квт-ч электрической энергии. За то же время котел выбрасывает в атмосферу около 100000 м3 газов.
Генерированный пар проходит через пароперегреватель, где его темпе¬ратура и давление увеличиваются, и затем поступает в турбину
высокого давления
. Механическая энергия вращения турбины преобразуется электрогенератором в электрическую энергию. Для того чтобы получить более высокий кпд преобразования энергии, пар из турбины обычно возвращается в котел для вторичного перегрева и затем приводит в движение одну или две турбины
низкого давления
и только после этого конденсируется путем охлаждения; конденсат возвращается в цикл котла.
Оборудование тепловой электростанции включает механизмы топливоподачи, котлы, турбины, генераторы, а также сложные системы охлаждения, очистки дымовых газов и удаления золы. Все эти основные и вспомогательные системы рассчитываются так, чтобы работать с высокой надежностью в течение 40 или более лет при нагрузках, которые могут меняться от 20% установленной мощности станции до максимальной. Капитальные затраты на оборудование типичной тепловой электростанции мощностью 1000 МВт, как правило, превышают 1 млрд. долл.
Эффективность, с которой тепло, освобожденное при сжигании угля, может быть превращено в электричество, до 1900 г. составляла лишь 5%, но к 1967 г. достигла 40%. Другими словами, за период около 70 лет удельное потребление угля на единицу производимой электрической энергии сократилось в восемь раз. Соответственно происходило и снижение стоимости 1 кВт установленной мощности тепловых электростанций: если в 1920 г. она составляла 350 долл. (в ценах 1967 г.), то в 1967 г. снизилась до 130 долл. Цена отпускаемой электроэнергии также упала за тот же период с 25 центов до 2 центов за 1 кВт-чае.
Однако начиная с 60-х годов темпы прогресса стали падать. Эта тенденция, по-видимому, объясняется тем, что традиционные тепловые электростанции достигли предела своего совершенства, определяемого законами термодинамики и свойствами материалов, из которых изготавливаются котлы и турбины. С начала 70-х годов эти технические факторы усугубились новыми экономическими и организационными причинами. В частности, резко возросли капитальные затраты, темпы роста спроса на электроэнергию замедлились, ужесточились требования к защите окружающей среды от вредных выбросов и удлинились сроки реализации проектов строительства электростанций. В результате стоимость производства электроэнергии из угля, имевшая многолетнюю тенденцию к снижению, резко возросла. Действительно, 1 кВт электроэнергии, производимой новыми тепловыми электростанциями, стоит теперь больше, чем в 1920 г. (в сопоставимых ценах).
В последние 20 лет на стоимость тепловых электростанций на угольном топливе
наибольшее влияние
оказывали ужесточившиеся требования к удалению газообразных,
жидких и твердых отходов. На системы газоочистки и золоудаления современных тепловых электростанций теперь приходится 40% капитальных затрат и 35% эксплуатационных расходов. С технической и экономической точек зрения наиболее значительным элементом системы контроля выбросов является установка для де-сульфуризации дымовых газов, часто называемая системой мокрого (скрубберного) пылеулавливания. Мокрый пылеуловитель (скруббер) задерживает окислы серы, являющиеся основным загрязняющим веществом, образующимся при сгорании угля.
Идея мокрого пылеулавливания проста, но на практике оказывается трудно осуществимой и дорогостоящей. Щелочное вещество, обычно известь или известняк, смешивается с водой, и раствор распыляется в потоке дымовых газов. Содержащиеся в дымовых газах окислы серы абсорбируются частицами щелочи и выпадают из раствора в виде инертного сульфита или сульфата кальция (гипса). Гипс может быть легко удален или, если он достаточно чист, может найти сбыт как строительный материал. В более сложных и дорогих скрубберных системах гипсовый осадок может превращаться в серную кислоту или элементарную серу – более ценные химические продукты. С 1978 г. установка скрубберов является обязательной на всех строящихся тепловых электростанциях на пылеугольном топливе. В результате этого в энерге¬тической промышленности США сейчас больше скрубберных установок, чем во всем остальном мире.
Стоимость скрубберной системы на новых станциях обычно составляет 150-200 долл. на 1 кВт установленной мощности. Установка скрубберов на действующих станциях, первоначально спроектированных без мокрой газоочистки, обходится на 10-40% дороже, чем на новых станциях. Эксплуатационные расходы на скрубберы довольно высоки независимо от того, установлены они на старых или новых станциях. В скрубберах образуется огромное количество гипсового шлама, который необходимо выдерживать в отстойных прудах или удалять в отвалы, что создает новую экологическую проблему. Например, тепловая электростанция мощностью 1000 МВт, работающая на каменном угле, содержащем 3% серы, производит в год столько шлама, что им можно покрыть площадь в 1 км2 слоем толщиной около 1 м.
Кроме того, системы мокрой газоочистки потребляют много воды (на станции мощностью 1000 МВт расход воды составляет около 3800 л/мин), а их оборудование и трубопроводы часто подвержены засорению и коррозии. Эти факторы увеличивают эксплуатационные расходы и снижают общую надежность систем. Наконец, в скрубберных системах расходуется от 3 до 8% вырабатываемой станцией энергии на привод насосов и дымососов и на подогрев дымовых газов после газоочистки, что необходимо для предотвращения конденсации и коррозии в дымовых трубах.
Широкое распространение скрубберов в американской энергетике не было ни простым, ни дешевым. Первые скрубберные установки были значительно менее надежными, чем остальное оборудование станций, поэтому компоненты скрубберных систем проектировались с большим запасом прочности и надежности. Некоторые из трудностей, связанные с установкой и эксплуатацией скрубберов, могут быть объяснены тем фак том, что промышленное применение технологии скрубберной очистки было начато преждевременно. Только теперь, после 25-летнего опыта, надежность скрубберных систем достигла приемлемого уровня.
Стоимость тепловых станций на угольном топливе возросла не только из-за обязательного наличия систем контроля выбросов, но также и потому, что стоимость строительства сама по себе резко подскочила вверх. Даже с учетом инфляции удельная стоимость установленной мощности тепловых станций на угольном топливе сейчас в три раза выше, чем в 1970 г. За прошедшие 15 лет «эффект масштаба», т. е. выгода от строительства крупных электростанций, был сведен на нет значительным удорожанием строительства. Частично это удорожание отражает высокую стоимость финансирования долгосрочных объектов капитального строительства.
Какое влияние имеет задержка реализации проекта, можно видеть на примере японских энергетических компаний. Японские фирмы обычно более расторопны, чем их американские коллеги, в решении организационно-технических и
финансовых проблем
, которые часто задерживают ввод в эксплуатацию крупных строительных объектов. В Японии электростанция может быть построена и пущена в действие за 30-40 месяцев, тогда как в США для станции такой же мощности обычно требуется 50-60 месяцев. При таких больших сроках реализации проектов стоимость новой строящейся станции (и, следовательно, стоимость замороженного капитала) оказывается сравнимой с основным капиталом многих энергетических компаний США.
Поэтому энергетические компании ищут пути снижения стоимости строительства новых электрогенерирующих установок, в частности применяя модульные установки меньшей мощности, которые можно быстро транспортировать и устанавливать на существующей станции для удовлетворения растущей потребности. Такие установки могут быть пущены в эксплуатацию в более короткие сроки и поэтому окупаются быстрее, даже если коэффициент окупаемости капиталовложений остается постоянным. Установка новых модулей только в тех случаях, когда требуется увеличение мощности системы, может дать чистую экономию до 200 долл. на 1 кВт, несмотря на то что при применении маломощных установок теряются выгоды от «эффекта масштаба».
В качестве альтернативы строительству новых электрогенерирующих объектов энергетические компании также практиковали реконструкцию действующих старых электростанций для улучшения их рабочих характеристик и продления срока службы. Эта стратегия, естественно, требует меньших капитальных затрат, чем строительство новых станций. Такая тенденция оправдывает себя и потому, что электростанции, построенные около 30 лет назад, еще не устарели морально. В некоторых случаях они работают даже с более высоким кпд, так как не оснащены скрубберами. Старые электростанции приобретают все больший удельный вес в энергетике страны. В 1970 г. только 20 электрогенерирующих объектов в США имели возраст более 30 лет. К концу века 30 лет будет средним воз¬растом тепловых электростанций на угольном топливе.
Энергетические компании также ищут пути снижения эксплуатационных расходов на станциях. Для предотвращения потерь энергии необходимо обеспечить своевременное предупреждение об ухудшении рабочих характеристик наиболее важных участков объекта. Поэтому непрерывное наблюдение за состоянием узлов и систем становится важной
составной частью
эксплуатационной службы. Такой непрерывный контроль естественных процессов износа, коррозии и эрозии позволяет операторам станции принять своевременные меры и предупредить аварийный выход из строя энергетических установок. Значимость таких мер может быть правильно оценена, если учесть, например, что вынужденный простой станции на угольном топливе мощностью 1000 МВт может принести энергетической компании убытки в 1 млн. долл. в день, главным образом потому, что невыработанная энергия должна быть компенсирована путем энергоснабжения из более дорогих источников.
Рост
удельных расходов
на транспортировку и обработку угля и на шлакоудаление сделал
важным фактором
и качество угля (определяемое содержанием влаги, серы и других минералов), определяющее рабочие характеристики и экономику тепловых электростанций. Хотя низкосортный уголь может стоить дешевле высокосортного, его расход на производство того же количества электрической энергии значительно больше. Затраты на перевозку большего объема низкосортного угля могут перекрыть выгоду, обусловленную его более низкой ценой. Кроме того, низкосортный уголь дает обычно больше отходов, чем высокосортный, и, следовательно, необходимы большие затраты на шлакоудаление. Наконец, состав низкосортных углей подвержен большим колебаниям, что затрудняет «настройку» топливной системы станции на работу с максимально возможным кпд; в этом случае система должна быть отрегулирована так, чтобы она могла работать на угле наихудшего ожидаемого качества.
На действующих электростанциях качество угля может быть улучшено или по крайней мере стабилизировано путем удаления перед сжиганием некоторых примесей, например серосодержащих минералов. В очистных установках измельченный «грязный» уголь отделяется от примесей многими способами, использующими различия в удельном весе или других физических характеристиках угля и примесей.
Несмотря на указанные мероприятия по улучшению рабочих характеристик действующих тепловых электростанций на угольном топливе, в США к концу столетия нужно будет ввести в строй дополнительно 150000 МВт энергетических мощностей, если спрос на электроэнергию будет расти с ожидаемым темпом 2,3% в год. Для сохранения конкурентоспособности угля на постоянно расширяющемся энергетическом рынке энергетическим компаниям придется принять на вооружение новые прогрессивные способы сжигания угля, которые являются более эффективными, чем традиционные, в трех ключевых аспектах: меньшее загрязнение окружающей среды, сокращение сроков строительства электростанций и улучшение их рабочих и эксплуатационных характеристик.
СЖИГАНИЕ УГЛЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ уменьшает потребность во вспомогательных установках по очистке выбросов электростанции. Псевдоожиженныи слой смеси угля и известняка создается в топке котла воздушным потоком, в котором твердые частицы перемешиваются и находятся во взвешенном состоянии, т. е. ведут себя так же, как в кипящей жидкости. Турбулентное перемешивание обеспечивает полноту сгорания угля; при этом частицы известняка реагируют с окислами серы и улавливают около 90% этих окислов. Поскольку нагревательные грубы котла непосредственно касаются кипящего слоя топлива, генерация пара происходит с большей эффективностью, чем в обычных паровых котлах, работающих на измельченном угле. Кроме того, температура горящего угля в кипящем слое ниже, что предотвращает плавление котельного шлака и уменьшает образование окислов азота. |
ГАЗИФИКАЦИЯ УГЛЯ может быть осуществлена нагреванием смеси угля и воды в атмосфере кислорода. Продуктом процесса является газ, состоящий в основном из окиси углерода и водорода. После того как газ будет охлажден, очищен от твердых частиц и освобожден от серы, его мож- но использовать как топливо для газовых турбин, а затем для производства водяного пара для паровой турбины (комбинированный цикл). Станция с комбинированным циклом выбрасывает в атмосферу меньше загрязняющих веществ, чем обычная тепловая станция на угле. |
В настоящее время разрабатывается более десятка способов сжигания угля с
повышенным кпд
и меньшим ущербом для окружающей среды. Наиболее перспективными среди них являются сжигание в псевдоожиженном слое и газификация угля. Сжигание по первому способу производится в топке парового котла, которая устроена так, что измельченный уголь в смеси с частицами известняка поддерживается над решеткой топки во взвешенном («псевдо-ожиженном») состоянии мощным восходящим потоком воздуха. Взвешенные частицы ведут себя в сущности так же, как и в кипящей жидкости, т. е. находятся в турбулентном движении, что обеспечивает высокую эффективность процесса горения. Водяные трубы такого котла находятся в непосредственном контакте с «кипящим слоем» горящего топлива, в результате чего большая доля тепла передается теплопроводностью, что значительно более эффективно, чем радиационный и конвективный перенос тепла в обычном паровом котле.
Котел с топкой, где уголь сжигается в псевдоожиженном слое, имеет большую площадь теплопередающих поверхностей труб, чем обычный котел, работающий на измельченном в пыль угле, что позволяет снизить температуру в топке и тем самым уменьшить образование окислов азота. (Если температура в обычном котле может быть выше 1650 °С, то в котле с сжиганием в псевдоожиженном слое она находится в пределах 780-870 °С.) Более того, известняк, примешанный к углю, связывает 90 или более процентов серы, освободившейся из угля при горении, так как более низкая рабочая температура способствует прохождению реакции между серой и известняком с образованием сульфита или сульфата кальция. Таким образом вредные для окружающей среды вещества, образующиеся при сжигании угля, нейтрализуются на месте образования, т. е. в топке.
Кроме того, котел с сжиганием в псевдоожиженном слое по своему устройству и принципу работы менее чувствителен к колебаниям качества угля. В топке обычного котла, работающего на пылевидном угле, образуется огромное количество расплавленного шлака, который часто забивает теплопередающие поверхности и тем самым снижает кпд и надежность котла. В котле с сжиганием в псевдоожиженном слое уголь сгорает при температуре ниже точки плавления шлака и поэтому проблема засорения поверхностей нагрева шлаком даже не возникает. Такие котлы могут работать на угле более
низкого качества
, что в некоторых случаях позволяет существенно снизить эксплуатационные расходы.
Способ сжигания в псевдоожиженном слое легко реализуется в котлах модульной конструкции с небольшой паропроизводительностью. По некоторым оценкам капиталовложения на тепловую электростанцию с компактными котлами, работающими по принципу псевдоожиженного слоя, могут быть на 10-20% ниже капиталовложений на тепловую станцию традиционного типа такой же мощности. Экономия достигается за счет сокращения времени строительства. Кроме того, мощность такой станции можно легко нарастить при увеличении электрической нагрузки, что важно для тех случаев, когда ее рост в будущем заранее неизвестен. Упрощается и проблема планирования, так как такие компактные установки можно быстро смонтировать, как только возникнет необходимость увеличения выработки электроэнергии.
Котлы со сжиганием в псевдоожиженном слое могут также включаться в схему существующих электростанций, когда необходимо быстро увеличить генерируемую мощность. Например, энергетическая компания Northern States Power переделала один из пылеугольных котлов на станции в шт. Миннесота в котел с псевдоожиженным слоем. Переделка осуществлялась с целью увеличения мощности электростанции на 40%, снижения требований к качеству топива (котел может работать даже на местных отходах), более тщательной очистки выбросов и удлинения срока службы станции до 40 лет.
За прошедшие 15 лет масштабы применения технологии, используемой на тепловых электростанциях, оснащенных исключительно котлами со сжиганием в псевдоожиженном слое, расширились от мелких экспериментальных и полупромышленных установок до крупных «демонстрационных» станций. Такая станция с общей мощностью 160 МВт строится совместно компаниями Tennessee Valley Authority, Duke Power и Commonwealth of Kentucky; фирма Colorado-Ute Electric Association, Inc. пустила в эксплуатацию электрогенерирующую установку мощностью 110 МВт с котлами со сжиганием в псевдоожиженном слое. В случае успеха этих двух проектов, а также проекта компании Northern States Power, совместного предприятия частного сектора с общим капиталом около 400 млн. долл., экономический риск, связанный с применением котлов со сжиганием в псевдоожиженном слое в энергетической промышленности будет значительно уменьшен.
Другим способом, который, правда, уже существовал в более простом виде еще в середине XIX в., является газификация
каменного угля
с получением «чисто горящего» газа. Такой газ пригоден для освещения и отопления и широко использовался в США до второй мировой войны, пока не был вытеснен природным газом.
Первоначально газификация угля привлекла внимание энергетических компаний, которые надеялись с помощью этого способа получить сгорающее без отходов топливо и за счет этого избавиться от скрубберной очистки. Теперь стало очевидно, что газификация угля имеет и более важное преимущество: горячие продукты сгорания генераторного газа можно непосредственно использовать для привода газовых турбин. В свою очередь отработанное тепло продуктов сгорания после газовой турбины может быть утилизировано с целью получения пара для привода паровой турбины. Такое совместное использование газовых и паровых турбин, называемое комбинированным циклом, является ныне одним из самых
эффективных способов
производства электрической энергии.
Газ, полученный газификацией каменного угля и освобожденный от серы и твердых частиц, является прекрасным топливом для газовых турбин и, как и
природный газ
, сгорает почти без отходов. Высокий кпд комбинированного цикла компенсирует неизбежные потери, связанные с превращением угля в газ. Более того, станция с комбинированным циклом потребляет значительно
меньше воды
, так как две трети мощности развивает газовая турбина, которая не нуждается в воде в отличие от паровой турбины.
Жизнеспособность электрических станций с комбинированным циклом, работающих на принципе газификации угля, была доказана опытом эксплуатации станции “Cool Water” фир¬мы Southern California Edison. Эта станция мощностью около 100 МВт была введена в эксплуатацию в мае 1984 г. Она может работать на разных сортах угля. Выбросы станции по чистоте не отличаются от выбросов соседней станции, работающей на природном газе. Содержание окислов серы в уходящих газах поддерживается на уровне значительно ниже установленной нормы с помощью вспомогательной системы улавливания серы, которая удаляет почти всю серу, содержащуюся в исходном топливе, и производит чистую серу, используемую в промышленных целях. Образование окислов азота предотвращается добавкой к газу воды перед сжиганием, что снижает температуру горения газа. Более того, остающийся в газогенераторе остаток несгоревшего угля подвергается переплавке и превращается в инертный стекловидный материал, который после охлаждения отвечает требованиям, предъявляемым в штате Калифорния к твердым отходам.
Помимо более высокого кпд и меньшего загрязнения окружающей среды станции с комбинированным циклом имеют еще одно преимущество: они могут сооружаться в несколько очередей, так что установленная мощность наращивается блоками. Такая гибкость строительства уменьшает риск чрезмерных или, наоборот, недостаточных капиталовложений, связанный с неопределенностью роста спроса на электроэнергию. Например, первая очередь установленной мощности может работать на газовых турбинах, а в качестве топлива использовать не уголь, а нефть или природный газ, если текущие цены на эти продукты низки. Затем, по мере роста спроса на электроэнергию, дополнительно вводятся в строй котел-утилизатор и паровая турбина, что увеличит не только мощность, но и кпд станции. Впоследствии, когда спрос на электроэнергию вновь увеличится, на станции можно будет построить установку для газификации угля.
Роль тепловых электростанций на угольном топливе является ключевой темой, когда речь идет о сохранности природных ресурсов, защите окружающей среды и путях развития экономики. Эти аспекты рассматриваемой проблемы не обязательно являются конфликтующими. Опыт применения новых технологических процессов сжигания угля показывает, что они могут успешно и одновременно решать проблемы и охраны окружающей среды, и снижения стоимости электроэнергии. Этот принцип был учтен в совместном американо-канадском докладе о
кислотных дождях
, опубликованном в прошлом году. Руководствуясь содержащимися в докладе предложениями, конгресс США в настоящее время рассматривает возможность учреждения генеральной национальной инициативы по демонстрации и применению «чистых» процессов сжигания угля. Эта инициатива, которая объединит частный капитал с федеральными капиталовложениями, нацелена на широкое промышленное применение в 90-е годы новых процессов сжигания угля, включая котлы с сжиганием топлива в кипящем слое и газогенераторы. Однако даже при широком применении новых процессов сжигания угля в ближайшем будущем растущий спрос на электроэнергию не сможет быть удовлетворен без целого комплекса согласованных мероприятий по консервации электроэнергии, регулированию ее потребления и повышению производительности существующих тепловых электростанций, работающих на традиционных принципах. Постоянно стоящие на повестке дня экономические и
экологические проблемы
, вероятно, приведут к появлению совершенно новых технологических разработок, принципиально отличающихся от тех, что были здесь описаны. В перспективе тепловые электростанции на угольном топливе могут превратиться в комплексные предприятия по переработке природных ресурсов. Такие предприятия будут перерабатывать местные виды топлива и другие природные ресурсы и производить электроэнергию, тепло и различные продукты с учетом потребностей местной экономики. Кроме котлов с сжиганием в кипящем слое и установок для газификации угля такие предприятия будут оснащены электронными системами технической диагностики и автоматизированными системами управления и, кроме того, полезно использовать большинство
побочных продуктов
сжигания угля.
Таким образом, возможности улучшения экономических и экологических факторов производства электроэнергии на базе каменного угля очень широкие. Своевременное использование этих возможностей зависит, однако, от того, сможет ли правительство проводить сбалансированную политику в отношении производства энергии и защиты окружающей среды, которая создала бы необходимые стимулы для электроэнергетической промышленности. Необходимо принять меры к тому, чтобы новые процессы сжигания угля развивались и внедрялись рационально, при сотрудничестве с энергетическими компаниями, а не так, как это было с внедрением скрубберной газоочистки. Все это можно обеспечить, если свести к минимуму затраты и риск путем хорошо продуманного проектирования, испытания и усовершенствования небольших опытных экспериментальных установок с последующим широким промышленным внедрением разрабатываемых систем.
Принцип работы теплоэлектроцентрали (ТЭЦ) основан на уникальном свойстве водяного пара – быть теплоносителем. В разогретом состоянии, находясь под давлением, он превращается в мощный источник энергии, приводящий в движение турбины теплоэлектростанций (ТЭС) — наследие такой уже далекой эпохи пара.
Первая тепловая электростанция была построена в Нью-Йорке на Перл-Стрит (Манхэттен) в 1882 году. Родиной первой российской тепловой станции, спустя год, стал Санкт-Петербург. Как это ни странно, но даже в наш век высоких технологий ТЭС так и не нашлось полноценной замены: их доля в мировой энергетике составляет более 60 %.
И этому есть простое объяснение, в котором заключены достоинства и недостатки тепловой энергетики. Ее «кровь» — органическое топливо – уголь, мазут, горючие сланцы, торф и природный газ по-прежнему относительно доступны, а их запасы достаточно велики.
Большим минусом является то, что продукты сжигания топлива причиняют серьезный вред
окружающей среде
. Да и природная кладовая однажды окончательно истощится, и тысячи ТЭС превратятся в ржавеющие «памятники» нашей цивилизации.
Принцип работы
Для начала стоит определиться с терминами «ТЭЦ» и «ТЭС». Говоря понятным языком – они родные сестры. «Чистая» теплоэлектростанция – ТЭС рассчитана исключительно на производство электроэнергии. Ее другое название «конденсационная электростанция» – КЭС.
Теплоэлектроцентраль – ТЭЦ — разновидность ТЭС. Она, помимо генерации электроэнергии, осуществляет подачу горячей воды в
центральную систему
отопления и для бытовых нужд.
Схема работы ТЭЦ достаточно проста. В топку одновременно поступают топливо и разогретый воздух — окислитель. Наиболее распространенное топливо на российских ТЭЦ – измельченный уголь. Тепло от сгорания угольной пыли превращает воду, поступающую в котел в пар, который затем под давлением подается на паровую турбину. Мощный поток пара заставляет ее вращаться, приводя в движение ротор генератора, который преобразует механическую энергию в электрическую.
Далее пар, уже значительно утративший свои первоначальные показатели – температуру и давление – попадает в конденсатор, где после холодного «водяного душа» он опять становится водой. Затем конденсатный насос перекачивает ее в регенеративные нагреватели и далее — в деаэратор. Там вода освобождается от газов – кислорода и СО 2 , которые могут вызвать коррозию. После этого вода вновь подогревается от пара и подается обратно в котел.
Теплоснабжение
Вторая, не менее важная функция ТЭЦ – обеспечение горячей водой (паром), предназначенной для систем
центрального отопления
близлежащих населенных пунктов и
бытового использования
. В специальных подогревателях холодная вода нагревается до 70 градусов летом и 120 градусов зимой, после чего сетевыми насосами подается в общую камеру смешивания и далее по системе тепломагистралей поступает к потребителям. Запасы воды на ТЭЦ постоянно пополняются.
Как работают ТЭС на газе
По сравнению с угольными ТЭЦ, ТЭС, где установлены газотурбинные установки, намного более компактны и экологичны. Достаточно сказать, что такой станции не нужен паровой котел.
Газотурбинная установка
– это по сути тот же турбореактивный авиадвигатель, где, в отличие от него, реактивная струя не выбрасывается в атмосферу, а вращает ротор генератора. При этом выбросы продуктов сгорания минимальны.
Новые технологии сжигания угля
КПД современных ТЭЦ ограничен 34 %. Абсолютное большинство тепловых электростанций до сих пор работают на угле, что объясняется весьма просто — запасы угля на Земле по-прежнему громадны, поэтому доля ТЭС в общем объеме выработанной электроэнергии составляет около 25 %.
Процесс сжигания угля многие десятилетия остается практически неизменным. Однако и сюда пришли новые технологии.
Особенность данного метода состоит в том, что вместо воздуха в качестве окислителя при сжигании угольной пыли используется выделенный из воздуха чистый кислород. В результате, из дымовых газов удаляется вредная примесь – NОx. Остальные вредные примеси отфильтровываются в процессе нескольких ступеней очистки. Оставшийся на выходе СО 2 закачивается в емкости под большим давлением и подлежит захоронению на глубине до 1 км.
Метод «oxyfuel capture»
Здесь также при сжигании угля в качестве окислителя используется чистый кислород. Только в отличие от предыдущего метода в момент сгорания образуется пар, приводящий турбину во вращение. Затем из дымовых газов удаляются зола и оксиды серы, производится охлаждение и конденсация. Оставшийся углекислый газ под давлением 70 атмосфер переводится в жидкое состояние и помещается под землю.
Метод «pre-combustion»
Уголь сжигается в «обычном» режиме – в котле в смеси с воздухом. После этого удаляется зола и SO 2 – оксид серы. Далее происходит удаление СО 2 с помощью специального жидкого абсорбента, после чего он утилизируется путем захоронения.
Пятерка самых мощных теплоэлектростанций мира
Первенство принадлежит китайской ТЭС Tuoketuo мощностью 6600 МВт (5 эн/бл. х 1200 МВт), занимающей площадь 2,5 кв. км. За ней следует ее «соотечественница» — Тайчжунская ТЭС мощностью 5824 МВт. Тройку лидеров замыкает крупнейшая в России Сургутская ГРЭС-2 – 5597,1 МВт. На четвертом месте польская Белхатувская ТЭС – 5354 МВт, и пятая – Futtsu CCGT Power Plant (Япония) – газовая ТЭС мощностью 5040 МВт.
Возможно, будет полезно почитать:
- Заявление о приостановке работы в связи с невыплатой зарплаты
; - Что сказано об увольнении по собственному желанию в п
; - Как восстановить утерянную квитанцию Потерял чек сбербанка можно ли восстановить
; - Где взять номер лицевого счета для заявления на налоговый вычет?
; - Порядок заполнения перечня заявлений о ввозе товаров и уплате косвенных налогов Проверить уплату косвенных налогов в белоруссии
; - Поиск инн организации по названию
; - Дистанционное обучение на бухгалтерских курсах
; - Измерение величин Измеряется s в физике
;
Частые вопросы
Как можно описать принцип работы ТЭС?
Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора.
Что такое ТЭС и как она работает?
ТЭС (теплоэлектростанция) – это объект, генерирующий электроэнергию путем сжигания топлива, например, газа или угля, в специальных котлах. В них также по трубам циркулирует вода, которая при нагреве превращается в пар. А он вращает турбины, которые и генерируют ток.
Как устроена работа ТЭЦ?
Тепловые электростанции (ТЭС) работают на ископаемом топливе. Оно сгорает в топке, и энергия химических связей переходит в тепловую энергию продуктов сгорания — воды и углекислого газа. Тепло нагревает воду в паровом котле и превращает ее в горячий пар, который под огромным давлением устремляется в турбину.
На чем работает тепловая электростанция?
В качестве топлива широко используются различные горючие ископаемые: уголь, природный газ (пропан, метан), реже — мазут, водород, биогаз, сланцевый газ, нефть, бензин, дизельное топливо, спирт отходы, торф, горючие сланцы, дрова.
Полезные советы
СОВЕТ №1
Изучите основные принципы работы тэс, чтобы понять, какие задачи он может решить и каким образом.
СОВЕТ №2
Обратитесь к специалистам или источникам информации, чтобы получить более подробное представление о том, какие тэс могут быть применимы в вашей конкретной ситуации.
СОВЕТ №3
Изучите примеры успешной реализации тэс, чтобы понять, какие принципы работы были использованы в этих случаях.