Ученые с планеты Земля используют массу инструментов, пытаясь описать то, как работает природа и вселенная в целом. Что они приходят к законам и теориям. В чем разница? Научный закон можно зачастую свести к математическому утверждению, вроде E = mc²; это утверждение базируется на эмпирических данных и его истинность, как правило, ограничивается определенным набором условий. В случае E = mc² – скорость света в вакууме.
Научная теория зачастую стремится синтезировать ряд фактов или наблюдений за конкретными явлениями. И в целом (но не всегда) выходит четкое и проверяемое утверждение относительно того, как функционирует природа. Совсем не обязательно сводить
научную теорию
к уравнению, но она на самом деле представляет собой нечто фундаментальное о работе природы.
Как законы, так и теории зависят от основных элементов
научного метода
, например, создании гипотез, проведения экспериментов, нахождения (или не нахождения) эмпирических данных и заключение выводов. В конце концов, ученые должны быть в состоянии повторить результаты, если эксперименту суждено стать основой для общепринятного закона или теории.
В этой статье мы рассмотрим десять научных законов и теорий, которые вы можете освежить в памяти, даже если вы, к примеру, не так часто обращаетесь к сканирующему электронному микроскопу. Начнем со взрыва и закончим неопределенностью.
Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, ). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.
Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.
Закон космического расширения Хаббла
Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.
Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 – это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстояние – это расстояние одной галактики до той, с которой происходит сравнение.
Постоянная Хаббла рассчитывалась при
разных значениях
в течение достаточно долгого времени, однако в настоящее время она замерла на точке 70 км/с на мегапарсек. Для нас это не так важно. Важно то, что закон представляет собой
удобный способ
измерения скорости галактики относительно нашей собственной. И еще важно то, что закон установил, что Вселенная состоит из многих галактик, движение которых прослеживается до Большого Взрыва.
Мнение эксперта:
Подготовка к ЕГЭ по физике требует систематического подхода и глубокого понимания материала. Эксперты рекомендуют начать подготовку заранее, чтобы иметь достаточно времени для освоения теории и выполнения практических заданий. Важно не только усвоить базовые формулы и законы, но и научиться их применять на практике. Регулярные самостоятельные занятия, выполнение тестов и задач, а также консультации с опытными преподавателями помогут уверенно сдать экзамен. Кроме того, полезно использовать дополнительные учебные пособия и онлайн-ресурсы для более глубокого изучения материала.
Законы планетарного движения Кеплера
На протяжении веков ученые сражались друг с другом и с религиозными лидерами за орбиты планет, особенно за то, вращаются ли они вокруг Солнца. В 16 веке Коперник выдвинул свою спорную концепцию гелиоцентрической
Солнечной системы
, в которой планеты вращаются вокруг Солнца, а не Земли. Однако только с Иоганном Кеплером, который опирался на работы Тихо Браге и других астрономов, появилась четкая научная основа для движения планет.
Три закона планетарного движения Кеплера, сложившиеся в начале 17 века, описывают движение планет вокруг Солнца. Первый закон, который иногда называют законом орбит, утверждает, что планеты вращаются вокруг Солнца по эллиптической орбите. Второй закон, закон площадей, говорит, что линия, соединяющая планету с солнцем, образует
равные площади
через равные промежутки времени. Другими словами, если вы измеряете площадь, созданную нарисованной линией от Земли от Солнца, и отслеживаете движение Земли на протяжении 30 дней, площадь будет одинаковой, вне зависимости от положения Земли касательно начала отсчета.
Третий закон, закон периодов, позволяет установить четкую взаимосвязь между орбитальным периодом планеты и расстоянием до Солнца. Благодаря этому закону, мы знаем, что планета, которая относительно близка к Солнцу, вроде Венеры, имеет гораздо более краткий орбитальный период, чем далекие планеты, вроде Нептуна.
Интересные факты
- Физика – это не только формулы и уравнения.Это также понимание того, как устроен мир вокруг нас. Изучая физику, вы научитесь мыслить логически и критически, что пригодится вам не только на экзамене, но и в жизни.
- ЕГЭ по физике – это не самый сложный экзамен.Если вы хорошо подготовитесь, то сможете сдать его на высокий балл. Для этого нужно начать готовиться заранее, решать задачи и тесты, а также изучать теорию.
- Физика – это не только школьный предмет.Она используется во многих областях науки и техники. Если вы хотите стать инженером, врачом, программистом или работать в любой другой сфере, где требуются знания физики, то вам нужно хорошо сдать ЕГЭ по этому предмету.
Универсальный закон тяготения
Сегодня это может быть в порядке вещей, но более чем 300 лет назад сэр Исаак Ньютон предложил революционную идею: два любых объекта, независимо от их массы, оказывают гравитационное притяжение друг на друга. Этот закон представлен уравнением, с которым многие школьники сталкиваются в старших классах физико-математического профиля.
F = G × [(m1m2)/r²]
F – это гравитационная сила между двумя объектами, измеряемая в ньютонах. M1 и M2 – это массы двух объектов, в то время как r – это расстояние между ними. G – это гравитационная постоянная, в настоящее время рассчитанная как 6,67384(80)·10 −11 или Н·м²·кг −2 .
Преимущество универсального закона тяготения в том, что он позволяет вычислить гравитационное притяжение между двумя любыми объектами. Эта способность крайне полезна, когда ученые, например, запускают спутник на орбиту или определяют курс Луны.
Опыт других людей
“Все что нужно знать физику” – это незаменимый помощник для подготовки к ЕГЭ по физике. Люди отмечают, что книга содержит все необходимые материалы и ясные объяснения, которые помогают легко усвоить сложные темы. Авторы предоставляют полезные советы по подготовке к экзамену, что делает изучение физики более эффективным и увлекательным.
Законы Ньютона
Раз уж мы заговорили об одном из величайших ученых, когда-либо живущих на Земле, давайте поговорим о других знаменитых законах Ньютона. Его три закона движения составляют существенную часть современной физики. И как и многие другие законы физики, они элегантны в своей простоте.
Первый из трех законов утверждает, что объект в движении остается в движении, если на него не действует внешняя сила. Для шарика, который катится по полу, внешней силой может быть трение между шаром и полом, или же мальчик, который бьет по шарику в другом направлении.
Второй закон устанавливает связь между массой объекта (m) и его ускорением (a) в виде уравнения F = m x a. F представляет собой силу, измеряемую в ньютонах. Также это вектор, то есть у него есть направленный компонент. Благодаря ускорению, мяч, который катится по полу, обладает особым вектором в направлении его движения, и это учитывается при расчете силы.
Третий закон довольно содержательный и должен быть вам знаком: для каждого действия есть равное противодействие. То есть для каждой силы, приложенной к объекту на поверхности, объект отталкивается с такой же силой.
Законы термодинамики
Британский физик и писатель Ч. П. Сноу однажды сказал, что неученый, который не знал второго закона термодинамики, был как ученый, который никогда не читал Шекспира. Нынче известное заявление Сноу подчеркивало важность термодинамики и необходимость даже людям, далеким от науки, знать его.
Термодинамика – это наука о том, как энергия работает в системе, будь то двигатель или ядро Земли. Ее можно свести к нескольким базовым законам, которые Сноу обозначил следующим образом:
- Вы не можете выиграть.
- Вы не избежите убытков.
- Вы не можете выйти из игры.
Давайте немного разберемся с этим. Говоря, что вы не можете выиграть, Сноу имел в виду то, что поскольку материя и энергия сохраняются, вы не можете получить одно, не потеряв второе (то есть E=mc²). Также это означает, что для работы двигателя вам нужно поставлять тепло, однако в отсутствии идеально замкнутой системы некоторое количество тепла неизбежно будет уходить в
открытый мир
, что приведет ко второму закону.
Второй закон – убытки неизбежны – означает, что в связи с возрастающей энтропией, вы не можете вернуться к прежнему энергетическому состоянию. Энергия, сконцентрированная в одном месте, всегда будет стремиться к местам более низкой концентрации.
Наконец, третий закон – вы не можете выйти из игры – относится , самой низкой теоретически возможной температуре – минус 273,15 градуса Цельсия. Когда система достигает абсолютного нуля, движение молекул останавливается, а значит энтропия достигнет самого низкого значения и не будет даже кинетической энергии. Но в
реальном мире
достичь абсолютного нуля невозможно – только очень близко к нему подойти.
Сила Архимеда
После того как
древний грек
Архимед открыл свой принцип плавучести, он якобы крикнул «Эврика!» (Нашел!) и побежал голышом по Сиракузам. Так гласит легенда. Открытие было вот настолько важным. Также легенда гласит, что Архимед обнаружил принцип, когда заметил, что вода в ванной поднимается при погружении в него тела.
Согласно принципу плавучести Архимеда, сила, действующая на погруженный или частично погруженный объект, равна массе жидкости, которую смещает объект. Этот принцип имеет
важнейшее значение
в расчетах плотности, а также проектировании подлодок и других океанических судов.
Эвoлюция и естественный отбор
Теперь, когда мы установили некоторые из основных понятий о том, с чего началась Вселенная и как физические законы влияют на нашу
повседневную жизнь
, давайте обратим внимание на человеческую форму и выясним, как мы дошли до такого. По мнению большинства ученых, вся жизнь на Земле имеет общего предка. Но для того, чтобы образовалась такая огромная разница между всеми живыми организмами, некоторые из них должны были превратиться в отдельный вид.
В общем смысле, эта дифференциация произошла в процессе эволюции. Популяции организмов и их черты прошли через такие механизмы, как мутации. Те, у кого черты были более выгодными для выживания, вроде коричневых лягушек, которые отлично маскируются в болоте, были естественным образом избраны для выживания. Вот откуда взял начало термин естественный отбор.
Можно умножить две этих теории на много-много времени, и собственно это сделал Дарвин в 19 веке. Эволюция и естественный отбор объясняют огромное разнообразие жизни на Земле.
Общая теория относительности
Альберта Эйнштейна была и остается важнейшим открытием, которое навсегда изменила наш взгляд на вселенную. Главным прорывом Эйнштейна было заявление о том, что пространство и время не являются абсолютными, а гравитация – это не просто сила, приложенная к объекту или массе. Скорее гравитация связана с тем, что масса искривляет само пространство и время (пространство-время).
Чтобы осмыслить это, представьте, что вы едете через всю Землю по прямой линии в восточном направлении, скажем, из северного полушария. Через некоторое время, если кто-то захочет точно определить ваше местоположение вы будете гораздо южнее и восточнее своего исходного положения. Это потому что Земля изогнута. Чтобы ехать прямо на восток, вам нужно учитывать форму Земли и ехать под углом немного на север. Сравните круглый шарик и лист бумаги.
Пространство – это в значительной мере то же самое. К примеру, для пассажиров ракеты, летящей вокруг Земли, будет очевидно, что они летят по прямой в пространстве. Но на самом деле, пространство-время вокруг них изгибается под действием силы тяжести Земли, заставляя их одновременно двигаться вперед и оставаться на орбите Земли.
Теория Эйнштейна оказала огромное влияние на будущее астрофизики и космологии. Она объяснила небольшую и неожиданную аномалию орбиты Меркурия, показала, как изгибается свет звезд и заложила
теоретические основы
для черных дыр.
Принцип неопределенности Гейзенберга
Расширение теории относительности Эйнштейна рассказало нам больше о том, как работает Вселенная, и помогло заложить основу для квантовой физики, что привело к совершенно неожиданному конфузу теоретической науки. В 1927 году осознание того, что все законы вселенной в определенном контексте являются гибкими, привело к ошеломительному открытию немецкого ученого Вернера Гейзенберга.
Постулируя свой принцип неопределенности, Гейзенберг понял, что невозможно одновременно знать с
высоким уровнем
точности два свойства частицы. Вы можете знать положение электрона с
высокой степенью
точности, но не его импульс, и наоборот.
Позже Нильс Бор сделал открытие, которое помогло объяснить принцип Гейзенберга. Бор выяснил, что электрон обладает качествами как частицы, так и волны. Концепция стала известна как корпускулярно-волновой дуализм и легла в основу квантовой физики. Поэтому, когда мы измеряем положение электрона, мы определяем его как частицу в определенной точке пространства с неопределенной длиной волны. Когда мы измеряем импульс, мы рассматриваем электрон как волну, а значит можем знать амплитуду ее длины, но не положение.
Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень
юном возрасте
школа знакомит детей с этими принципами.
Для многих начинается эта наука с учебника “Физика (7 класс)”. Основные понятия и и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.
Наука физика
Многие нюансы описываемой науки знакомы всем с
раннего детства
. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.
Термин «физика» был впервые зафиксирован Аристотелем еще в четвертом веке до нашей эры. Изначально он являлся синонимом понятия “философия”. Ведь обе науки имели
единую цель
– правильным образом объяснить все механизмы функционирования Вселенной. Но уже в шестнадцатом веке вследствие научной революции физика стала самостоятельной.
Общий закон
Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы.
Речь идет
о
Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.
Помимо приведенного
общего принципа
, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.
Механика
Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.
- Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
- Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.
Законы Ньютона (представляют собой базис классической механики):
- Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
- Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
- Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
- Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.
Термодинамика
Школьный учебник, открывающий ученикам основные законы (“Физика. 7 класс”), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.
Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют
общий характер
и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.
Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе,
внешние условия
для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.
Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.
А закон Гей-Люссака (его также называют утверждает, что для газа определенной массы в условиях
стабильного давления
результат деления его объема на абсолютную температуру непременно становится величиной постоянной.
Еще одно
важное правило
этой отрасли – первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее
внутренней энергии
и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.
Другая газовая закономерность – это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.
Электричество
Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.
Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в
данный момент
проводящего ток. Ее так и называют – сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).
Закон сохранения заряда является одним из
базовых принципов
природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий
электрический заряд
всех новообразованных частиц непременно должен равняться нулю.
Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и среды, в которой и происходит описываемое взаимодействие.
Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.
Называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия
магнитного поля
определенным образом. Для этого необходимо расположить кисть
правой руки
так, чтобы линии магнитной индукции образно касались раскрытой ладони, а
большой палец
вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.
Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.
Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей.
Данный закон
состоит в следующем: в замкнутом контуре генерируемая индукции тем больше, чем больше скорость изменения магнитного потока.
Оптика
Отрасль “Оптика” также отражает часть
школьной программы
(основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:
- Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды
точное положение
фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением. - Принцип Гюйгенса-Френеля отражает
эффективный метод
разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света. - волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
- Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
- Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.
Атомная и ядерная физика
Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах
средней школы
и высших учебных заведениях.
Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.
Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.
Основные законы физики, которые должен знать человек
Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:
- Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
- Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
- Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.
Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.
Ценность подобных знаний
Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.
Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.
Итоги
Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие – по роду деятельности, а некоторые – из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.
Не оставайтесь равнодушными – развивайтесь!
Физика приходит к нам в 7 классе общеобразовательной школы, хотя на самом деле мы знакомы с ней чуть ли не с пелёнок, ведь это всё, что нас окружает. Этот предмет кажется очень сложным для изучения, а учить его нужно.
Данная статья предназначена для лиц старше 18 лет
А вам уже исполнилось 18?
Учить физику можно по-разному — все методы хороши по-своему (но вот даются всем не одинаково). Школьная программа не даёт полного понятия (и принятия) всех явлений и процессов. Виной всему — недостаток
практических знаний
, ведь выученная теория по сути ничего не даёт (особенно для людей с небольшим пространственным воображением).
Итак, прежде чем приступать к изучению этого интереснейшего предмета, нужно сразу выяснить две вещи — для чего вы учите физику и на какие результаты рассчитываете.
Хотите сдать ЕГЭ и поступить в технический ВУЗ? Отлично — можете начинать дистанционное обучение в интернете. Сейчас много университетов или просто профессоров ведут свои онлайн-курсы, где в достаточно
доступной форме
излагают весь школьный курс физики. Но тут есть и небольшие минусы: первый — готовьтесь к тому, что это будет далеко не бесплатно (и чем круче
научное звание
вашего виртуального преподавателя, тем дороже), второе — учить вы будете исключительно теорию. Применять же любую технологию придётся дома и самостоятельно.
Если же у вас просто проблемное обучение — нестыковка во взглядах с учителем, пропущенные уроки, лень или просто непонятен язык изложения, тут дело обстоит намного проще. Нужно просто взять себя в руки, а в руки — книги и учить, учить, учить. Только так можно получить явные предметные результаты (причём сразу по всем предметам) и значительно повысить уровень своих знаний. Помните — во сне выучить физику нереально (хоть и очень хочется). Да и очень эффективное эвристическое обучение не принесёт плодов без
хорошего знания
основ теории. То есть, положительные планируемые результаты возможны лишь при:
- качественном изучении теории;
- развивающем обучении взаимосвязи физики и других наук;
- выполнения упражнений на практике;
- занятиях с единомышленниками (если уж приспичило заняться эвристикой).
DIV_ADBLOCK201″>
Начало обучения физики с нуля — самый сложный, но вместе с тем и простой этап. Сложности заключаются только в том, что вам придётся запоминать много достаточно противоречивой и сложной информации на доселе незнакомом языке — над терминами нужно будет особо потрудиться. Но в принципе — это всё возможно и ничего сверхъестественного вам для этого не понадобится.
Как выучить физику с нуля?
Не ждите, что начало обучения будет очень сложным — это достаточно простая наука при условии, если понять её суть. Не спешите учить много различных терминов — сначала разберитесь с каждым явлением и «примерьте» его на свою повседневную жизнь. Только так физика сможет ожить для вас и станет максимально понятной — зубрёжкой этого вы просто не добьетесь. Поэтому правило первое — учим физику размеренно, без резких рывков, не впадая в крайности.
С чего начать? Начните с учебников, к сожалению, они важны и нужны. Именно там вы найдёте нужные формулы и термины, без которых вам не обойтись в процессе обучения. Быстро выучить их у вас не получится, есть резон расписать их на бумажках и развесить на видных местах (зрительную память ещё никто не отменял). А дальше буквально за 5 минут вы будете их ежедневно освежать в памяти, пока, наконец, не запомните.
Максимально качественного результата вы можете добиться где-то за год — это полный и понятный курс физики. Конечно же, увидеть первые сдвиги можно будет за месяц — этого времени будет вполне достаточно, чтобы осилить базовые понятия (но не глубокие знания — просьба не путать).
Но при всей лёгкости предмета не ждите, что у вас получится всё выучить за 1 день или за неделю — это невозможно. Поэтому есть резон сесть за учебники задолго до начала ЕГЭ. Да и зацикливаться на вопросе, за сколько можно вызубрить физику не стоит — это весьма непрогнозировано. Всё потому, что разные разделы этого предмета совсем по-разному даются и о том, как вам «пойдёт» кинематика или оптика никто не знает. Поэтому учитесь последовательно: параграф за параграфом, формула за формулой. Определения лучше несколько раз прописать и время от времени освежать в памяти. Это основа, которую вы обязательно должны запоминать, важно научиться оперировать определениями (употреблять их). Для этого старайтесь переносить физику на жизнь — используйте термины в обиходе.
Но самое главное, основа каждого метода и способа обучения — это ежедневный и упорный труд, без которого результатов вы не дождётесь. И это второе
правило легкого
изучения предмета — чем больше вы будете узнавать нового, тем проще это вам будет это даваться. Забудьте рекомендации типа науки во сне, даже если это работает, то точно не с физикой. Вместо этого займитесь задачами — это не только способ понять очередной закон, но и отличная тренировка для ума.
Для чего нужно учить физику? Наверно 90% школьников ответят, что для ЕГЭ, но это совсем не так. В жизни она пригодится намного чаще, чем география — вероятность заблудиться в лесу несколько ниже, чем самостоятельно поменять лампочку. Поэтому на вопрос, зачем нужна физика, можно ответить однозначно — для себя. Конечно же, не всем она понадобится в полном объеме, но
базовые знания
просто необходимы. Потому присмотритесь именно к азам — это способ, как легко и просто понять (не выучить) основные законы.
c”> Возможно, ли выучить физику самостоятельно?
Конечно можно — учите определения, термины, законы, формулы, старайтесь применять полученные знания на практике. Немаловажным будет и пояснения вопроса — как учить? Выделите для физики хотя бы час в день. Половину этого времени оставьте для получения нового материала — почитайте учебник. Четверть часа оставьте для зубрёжки или повторения новых понятий. Оставшееся 15 минут — время практики. То есть, понаблюдайте за
физическим явлением
, сделайте опыт или просто решите интересную задачку.
Реально ли такими темпами быстро выучить физику? Скорее всего нет — ваши знания будут достаточно глубоки, но не обширны. Но это единственный путь, как правильно можно выучить физику.
Проще всего это сделать, если потеряны знания только за 7 класс (хотя, в 9 классе это уже проблема). Вы просто восстанавливаете небольшие пробелы в знаниях и всё. Но если на носу 10 класс, а ваше знание физики равно нулю — это конечно
сложная ситуация
, но поправимая. Достаточно взять все учебники за 7, 8, 9 классы и как следует, постепенно изучить каждый раздел. Есть и путь попроще — взять издание для абитуриентов. Там в одной книжке собран весь школьный курс физики, но не ждите подробных и последовательных объяснений — подсобные материалы предполагают наличие элементарного уровня знаний.
Обучение физике — это весьма
долгий путь
, который можно с честью пройти лишь с помощью ежедневного упорного труда.
Начинаем серию статей о проблемах и устаревших концепциях в школьной программе и предлагаем порассуждать о том, зачем школьникам нужна физика, и почему сегодня её преподают не так, как хотелось бы.
Для чего современный школьник изучает физику? Или для того, чтобы ему не надоедали родители и учителя, или же затем, чтобы успешно сдать ЕГЭ по выбору, набрать нужное количество баллов и поступить в хороший вуз. Есть ещё вариант, что школьник физику любит, но эта любовь обычно существует как-то отдельно от школьной программы.
В любом из этих случаев преподавание ведётся по одинаковой схеме. Оно подстраивается под систему собственного контроля – знания должны преподноситься в такой форме, чтобы их можно было легко проверить. Для этого и существует система ГИА и ЕГЭ, а подготовка к этим экзаменам в результате и становится
главной целью
обучения.
Как устроено ЕГЭ по физике в его сегодняшнем варианте? Задания экзамена составляются по специальному кодификатору , куда входят формулы, которые, по идее, должен знать каждый ученик. Это около сотни формул по всем разделам школьной программы – от кинематики до физики атомного ядра.
Большая часть заданий – где-то 80% – направлена именно на применение этих формул. Причем другие способы решения использовать нельзя: подставил формулу, которой нет в списке – недополучил какое-то количество баллов, даже если ответ сошелся. И только оставшиеся 20% – это задачи на понимание.
В результате главная цель преподавательской работы сводится к тому, чтобы ученики знали этот набор формул и могли его применять. А вся физика сводится к несложной комбинаторике: прочитай условия задачи, пойми, какая формула тебе нужна, подставь нужные показатели и просто получи результат.
В элитарных и специализированных физико-математических школах обучение, конечно, устроено иначе. Там, как и при подготовке к всевозможным олимпиадам, присутствует какой-то элемент творчества, а комбинаторика формул становится намного сложнее. Но нас здесь интересует именно базовая программа по физике и её недостатки.
Стандартные задачи и абстрактные теоретические построения, которые должен знать обычный школьник, очень быстро выветриваются из головы. В результате физику после окончания школы уже никто не знает – кроме того меньшинства, которому это почему-то интересно или нужно по специальности.
Получается, что наука, главной целью которой было познание природы и реального физического мира, в школе становится донельзя абстрактной и удаленной от повседневного человеческого опыта. Физику, как и другие предметы, учат зубрёжкой, а когда в старших классах объём знаний, который необходимо усвоить, резко возрастает, всё зазубрить становится просто невозможно.
Наглядно о «формульном» подходе к обучению.
Но это было бы и необязательно, если бы целью обучения было не применение формул, а понимание предмета. Понимать – это, в конечном счёте, намного легче, чем зубрить.
Формировать картину мира
Посмотрим, к примеру, как работают книжки Якова Перельмана «Занимательная физика», «Занимательная математика», которыми зачитывались многие поколения школьников и после-школьников. Почти каждый параграф перельмановской «Физики» учит ставить вопросы, которые каждый ребенок может себе задать, отталкиваясь от элементарной логики и житейского опыта.
Задачки, которые нам здесь предлагают решить – не количественные, а качественные: нужно не подсчитать какой-то абстрактный показатель вроде коэффициента полезного действия, а поразмышлять, почему вечный двигатель невозможен в реальности, можно ли выстрелить из пушки до луны; нужно провести опыт и оценить, каким будет эффект от какого-либо физического взаимодействия.
Пример из «Занимательной физики» 1932 года: задача о крыловских лебеде, раке и щуке, решённая по правилам механики. Равнодействующая (OD) должна увлекать воз в воду.
Одним словом, заучивать формулы здесь не обязательно – главное понимать, каким
физическим законам
подчиняются предметы окружающей действительности. Проблема только в том, что знания такого рода куда сложнее поддаются объективной проверке, чем наличие в голове школьника точно определённого набора формул и уравнений.
Поэтому физика для обычного ученика оборачивается тупой зубрежкой, а в лучшем случае – некой
абстрактной игрой
ума. Формировать у человека целостную картину мира – совсем не та задача, которую де факто выполняет современная система образования. В этом отношении, кстати, она не слишком отличается от советской, которую многие склонны переоценивать (потому что раньше мы, мол,
атомные бомбы
разрабатывали и в космос летали, а сейчас только нефть умеем продавать).
По знанию физики ученики после окончания школы сейчас, как и тогда, делятся примерно на две категории: те, кто знает её очень хорошо, и те, кто не знает совсем. Со второй категорией ситуация особенно ухудшилась, когда время преподавания физики в 7-11 классе сократилось с 5 до 2 часов в неделю.
Большинству школьников физические формулы и теории действительно не нужны (что они прекрасно понимают), а главное – неинтересны в том абстрактном и сухом виде, в котором они преподносятся сейчас. В итоге массовое образование не выполняет никакой функции – только отнимает время и силы. У школьников – не меньше, чем у учителей.
Attention: неправильный подход к преподаванию точных наук может иметь разрушительные последствия
Если бы задачей школьной программы было формирование картины мира, ситуация была бы совершенно иной.
Конечно, должны быть и специализированные классы, где учат решать сложные задачи и глубоко знакомят с теорией, которая уже не пересекается с повседневным опытом. Но обычному, «массовому» школьнику было бы интереснее и полезнее знать, по каким законам работает
физический мир
, в котором он живет.
Дело, конечно, не сводится к тому, чтобы школьники вместо учебников читали Перельмана. Нужно изменить сам подход к преподаванию. Многие разделы (например, квантовую механику) можно было бы изъять из школьной программы, другие – сократить или пересмотреть, если бы не вездесущие организационные трудности, принципиальный консерватизм предмета и
образовательной системы
в целом.
Но позволим себе немного помечтать. После этих изменений, может быть, повысилась бы и общая социальная адекватность: люди бы меньше верили всяческим торсионным аферистам, спекулирующим на «защите биополя» и «нормализации ауры» с помощью нехитрых приспособлений и кусков неведомых минералов.
Все эти последствия порочной системы образования мы уже наблюдали в 90-е, когда самые удачливые мошенники даже пользовались немалыми суммами из госбюджета, – наблюдаем и сейчас, хотя и в меньших масштабах.
Знаменитый Григорий Грабовой не только уверял, что может воскрешать людей, но и отводил астероиды от Земли силой мысли и «экстрасенсорно диагностровал» правительственные самолёты. Ему покровительствовал не кто-нибудь, а генерал Георгий Рогозин, заместитель начальника Службы безопасности при президенте РФ.
В первую очередь нужно оценить свой текущий уровень знаний и понять, чего хочется достигнуть. Если под “с нуля” понимается полное незнание предмета, то прежде чем бросаться решать кучу тестов из всяких книг ФИПИ, нужно постараться разобраться в самих процессах и законах физики, по-моему мнению, понимание, должно быть основным моментом, на который необходимо обращаться внимание. Понимание сильно поможет вам при решении части, где есть выбор ответа(если он еще есть, я не в курсе). И так, чтобы начать что-то понимать, нужно брать учебник, открывать разделы физики по-порядку и читать, по несколько раз, не нужно думать, что прочитав один раз, вам этого будет достаточно, нужно перечитывать, поэтому запаситесь терпением. Из книг по теории я бы рекомендовал учебники Г.Я.Мякишева, только профильный уровень, каждому разделу посвящена отдельная книга. Но не для постоянного чтения, а на случай, чтобы открыть
непонятные места
и прочитать подробнее, подробность изложения зачастую решает проблему понимания. А для основного изучения теории: mathus.ru , там все в меру кратко и толково расписано. Не вижу смысла читать что-то фундаментальное типа Ландсберга, уж очень много времени потратите, для ЕГЭ не стоит. Отличным вариантом могут стать обучающие видео, только не абы что. НАСТОЯТЕЛЬНО рекомендую видео Михаила Пенкина(преподаватель МФТИ), их очень много в сети и качественнее не думаю, что можно найти. Его ролики, возможно, смогут вам заменить все учебники, даже лучше будет, если вы начнете именно с них! Далее на счет зубрежки формул и т.п. Не стоит зубрить формулы, пытайтесь решать задачи, где эти формулы применяются, со временем вы их запомните; учитесь выводить формулы самостоятельно, зная основные законы, можно получить практически всё что угодно. Конечно, скажите вы, что это сложно, с нуля-то, но всё же стоит пробовать. На счет решения задач с расчетами и развернутым ответом: начинайте с простых, как только сможете решать, усложняйте уровень задач. Чтобы научиться решать задачи в первую очередь стоит разбирать уже решенные задачи из интересующих разделов, потому что методы, подходы и вообще понимание что делать никак не возникнет у вас само, сколько бы времени вы не сидели над задачей. Рекомендую книги “Репетитор по физике” Касаткина И.Л., множество разобранных задач, читайте разбирайтесь, пробуйте решить аналогичную. Если готовы платить деньги, то не советую идти к репетитору, а советую портал http://foxford.ru/, это не реклама. Там можно пройти курсы по подготовке, преподаватели есть уникальные. Самое главное – не сдавайтесь, и не думайте, что всё сложно, как только начнете разбираться, поймете что хочется разбираться дальше. Предупрежу на счет кучи материалов из интернета, везде могут быть ошибки, а человеку который только начал, практически не под силу отличить хорошие материалы для подготовки от непонятно чего, не принимайте на веру первое попавшееся, старайтесь разобраться, ставьте всё под сомнение, это ключ к прогрессу. И так, если подвести черту:
1) стараться понимать
2)начинать разбираться с простого
3)не зацикливаться на нарешивании простых задач, если понимаете – из головы не улетит
4)не зубрить
5)использовать хорошие источники(те, которые я привел, проверены лично мной)
Пусть лучше вы поймете и с уверенностью ответите на ЕГЭ, чем назубрите и нарешаете. Понять всё за год НЕ возможно, можете поверить, физика не просто алгоритм действий. Но у вас обязательно должны быть темы, в которые вы вникли, чтобы решить с уверенностью всё из них, или почти всё. Так что, когда “пробежитесь” по всем разделам, стоит особо обращать внимание на те, которые лучше даются. Желаю удачи!
Возможно, будет полезно почитать:
- Заявление о приостановке работы в связи с невыплатой зарплаты
; - Что сказано об увольнении по собственному желанию в п
; - Как восстановить утерянную квитанцию Потерял чек сбербанка можно ли восстановить
; - Где взять номер лицевого счета для заявления на налоговый вычет?
; - Порядок заполнения перечня заявлений о ввозе товаров и уплате косвенных налогов Проверить уплату косвенных налогов в белоруссии
; - Поиск инн организации по названию
; - Дистанционное обучение на бухгалтерских курсах
; - Измерение величин Измеряется s в физике
;
Частые вопросы
Как подготовиться к ЕГЭ по физики?
Не забывайте про теорию. … Не забывайте про тесты. … Учитесь решать задачи из второй части. … Выучите формулы. … Выделите определенное время на подготовку. … Не нужно мучить себя подготовкой.6 дек. 2022 г.
Можно ли сдать ЕГЭ по физике с нуля?
ЕГЭ по физике можно сдать на 90−100 баллов, даже если вначале года вам кажется, что вы совершенно не знаете решений задач. Просто занимайтесь систематически, практикуйтесь выполнять задания, используйте разные сборники задач, непонятные моменты разбирайте с учителем.
Что нужно знать чтобы сдать физику?
Знать основные физические понятия, терминологию и законы (например, понятие теплоемкости, закон Паскаля и т. д.). … Понимать суть экспериментов. … Уметь решать практические задачи любой сложности.Понимать суть физических явлений и текстовых объяснений.
Какие темы нужно знать чтобы сдать ЕГЭ по физике?
МеханикаМолекулярная физика. ТермодинамикаЭлектродинамикаОсновы специальной теории относительности Квантовая физика
Полезные советы
СОВЕТ №1
Планируйте свое время и изучайте материал постепенно, начиная заранее. Регулярная подготовка к ЕГЭ по физике поможет вам усвоить материал более эффективно и уменьшит стресс перед экзаменом.
СОВЕТ №2
Практикуйтесь в решении задач разной сложности. Подготовка к ЕГЭ по физике требует не только теоретических знаний, но и навыков решения задач. Чем больше практики, тем увереннее будете себя чувствовать на экзамене.
СОВЕТ №3
Используйте различные источники для изучения материала: учебники, видеоуроки, онлайн-курсы. Разнообразие подходов к изучению поможет лучше усвоить информацию и подготовиться к различным типам заданий на экзамене.