Реактивное движение и ракета. Как взлетает ракета: космонавтика простыми словами Почему ракеты не летают в космосе

Выбрасывающие языки пламени
ракетные двигатели
выводят
космический корабль
на орбиту вокруг Земли. Другие ракеты выводят корабли за пределы Солнечной системы.

Во всяком случае, когда мы думаем о ракетах, то представляем себе космические полеты. Но ракеты могут летать и в вашей комнате, например во время празднования вашего дня рождения.

Обычный воздушный шарик тоже может быть ракетой. Каким образом? Надуйте шарик и зажмите его горловину, чтобы воздух не выходил наружу. Теперь отпустите шарик. Он начнет летать по комнате совершенно непредсказуемо и неуправляемо, толкаемый силой вырывающегося из него воздуха.

Вот другая простенькая ракета. Поставим на железнодорожную дрезину – пушку. Направим ее назад. Допустим, что трение между рельсами и колесами очень мало и торможение будет минимальным. Выстрелим из пушки. В момент выстрела дрезина тронется вперед. Если начать частую стрельбу, то дрезина не остановится, а с каждым выстрелом будет набирать скорость. Вылетая из пушечного ствола назад, снаряды толкают дрезину вперед.

Сила, которая при этом создается, называется отдачей. Именно эта сила заставляет двигаться любую ракету, как в земных условиях, так и в космосе. Какие бы вещества или предметы ни вылетали из движущегося предмета, толкая его вперед, мы будем иметь образец ракетного двигателя.

Интересно:

Почему звезды не падают? Описание, фото и видео


Ракета намного лучше приспособлена для полетов в космической пустоте, чем в земной атмосфере. Чтобы вывести в космос ракету, инженерам приходится конструировать мощные ракетные двигатели. Свои конструкции они основывают на универсальных законах мироздания, открытых великим английским ученым Исааком Ньютоном, работавшим в конце 17 века. Законы Ньютона описывают силу тяжести и то, что происходит с
физическими телами
, когда они движутся. Второй и третий законы помогают отчетливо понять, что представляет из себя ракета.

Движение ракеты и законы Ньютона

Второй закон Ньютона связывает силу движущегося предмета с его массой и ускорением (изменением скорости в единицу времени). Таким образом, для со здания мощной ракеты надо, чтобы ее двигатель выбрасывал большие массы сгоревшего топлива с большой скоростью. Третий закон Ньютона гласит, что сила действия равна силе противодействия и направлена в противоположную сторону. В случае ракеты сила действия – это раскаленные газы, вырывающиеся из сопла ракеты, сила противодействия толкает ракету вперед.


Ракеты, выводящие на орбиты космические корабли, используют как источник силы раскаленные газы. Но роль газов может играть все что угодно, то есть от выброшенных в пространство с кормы твердых тел до элементарных частиц – протонов, электронов, фотонов.

Мнение эксперта:

Реактивное движение и ракета – это тема, которая всегда привлекает внимание. Взлет ракеты в космос – это сложный процесс, который требует точной настройки и множества факторов. Эксперты отмечают, что основной причиной, почему ракеты не летают в космосе, является необходимость преодоления земной гравитации. Для этого ракета должна развить достаточную скорость и преодолеть атмосферное сопротивление. Кроме того, ракета должна быть способна преодолеть влияние земной тяготения, что требует больших усилий и топлива. Эксперты подчеркивают, что для успешного полета в космос необходимо точное планирование и инженерные решения, которые позволят преодолеть все препятствия на пути к звездам.

Запуск космического аппарата с космодрома Плесецк ракетой-носителем «Союз-2»Запуск космического аппарата с космодрома Плесецк ракетой-носителем «Союз-2»

За счет чего летит ракета?

Многие думают, что ракета движется оттого, что газы, выброшенные из сопла, отталкиваются от воздуха. Но это не так. Именно сила, которая выбрасывает газ из сопла, толкает ракету в космос. Действительно ракете легче летать в открытом космосе, где нет воздуха, и ничто не ограничивает полет частиц газа, выброшенного ракетой, а чем быстрее распространяются эти частицы, тем быстрее летит ракета.

Межконтинентальная баллистическая ракета — весьма впечатляющее творение человека. Огромные размеры,
термоядерная мощь,
столб пламени,
рев двигателей и грозный рокот пуска… Однако все это существует лишь на земле и в первые минуты запуска. По их истечении ракета прекращает существовать. Дальше в полет и на выполнение боевой задачи уходит лишь то,
что остается от ракеты после разгона — ее полезная нагрузка.

При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз…

Интересные факты

  1. Реактивное движение основано на третьем законе Ньютона.Согласно этому закону, каждое действие вызывает равное и противоположное противодействие. Когда ракета выбрасывает горячие газы из своего сопла, эти газы толкают ракету вперед.

  2. Ракета не может летать в космосе без топлива.В космосе нет воздуха, поэтому ракета не может использовать крылья для создания подъемной силы. Вместо этого ракета должна использовать свое топливо, чтобы создать тягу и двигаться вперед.

  3. Ракета может достичь очень высоких скоростей.Самая быстрая ракета, когда-либо созданная, была ракета “Сатурн-5”, которая использовалась для запуска миссий “Аполлон” на Луну. “Сатурн-5” мог достигать скорости более 11 000 миль в час (17 700 км/ч).

Реактивное движениеРеактивное движение

Что это, собственно, за нагрузка?

Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.

Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки. Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.

Опыт других людей

Реактивное движение и ракеты вызывают у людей много вопросов и интереса. Многие восхищаются взлетом ракеты и космическими полетами, но не все знают, как это происходит. Взлет ракеты осуществляется благодаря принципу реактивного движения, когда ракетный двигатель выбрасывает газы с большой скоростью, создавая тягу, необходимую для поднятия ракеты вверх. Однако многие ошибочно считают, что ракеты летают в космосе благодаря отсутствию гравитации. На самом деле, ракеты летают в космосе благодаря высокой скорости, которая позволяет преодолеть гравитацию Земли. Таким образом, понимание принципов реактивного движения и механики полета ракет поможет лучше понять и оценить удивительные возможности космических полетов.

Кто Первым ДОБЕРЕТСЯ ДО МАРСА? | Космические Ракеты России vs США vs КитайКто Первым ДОБЕРЕТСЯ ДО МАРСА? | Космические Ракеты России vs США vs Китай

Тянуть или толкать?

В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.

Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых
больших секретов
в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.

Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в
разные стороны
, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.

На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.

Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как
летучие мыши
. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.

Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.

К-551 «Владимир Мономах» — российская атомная подводная лодка
стратегического назначения
(проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.

Деликатные движения

Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?

Подводные лодки проекта 955 «Борей» — серия российских атомных подводных лодок класса «ракетный подводный крейсер стратегического назначения» четвертого поколения. Первоначально проект создавался под ракету «Барк», ей на смену пришла «Булава».

Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как
обручальное кольцо
на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.

Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.

Американские подводные лодки класса «Огайо» — единственный тип ракетоносцев, находящийся на вооружении США. Несет на борту 24
баллистических ракет
ы с РГЧ Trident-II (D5). Количество боевых блоков (в зависимости от мощности) — 8 или 16.

Бездны математики

Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.

Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.

В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.

Полезная нагрузка межконтинентальной баллистической ракеты
большую часть
полета проводит в режиме космического объекта, поднимаясь на высоту, в три раза больше высоты МКС. Огромной длины траектория должна быть просчитана с особой точностью.

Полет без боеголовок

Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь. Недолгую, но насыщенную.

После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в
космическом солнце
ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные,
надувные шарики
, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».

Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.

Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?

На фото — пуск межконтинентальной ракеты Trident II (США) с подводной лодки. В настоящий момент Trident («Трезубец») — единственное семейство МБР, ракеты которого устанавливаются на американских подводных лодках. Максимальный забрасываемый вес — 2800 кг.

Последний отрезок

Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний!

Все сейчас горит огнем, все обтянуто раскаленной плазмой и хорошо светит вокруг оранжевым цветом углей из костра. Более плотные части уходят тормозиться вперед, более легкие и парусные сдуваются в хвост, растягивающийся по небу. Все горящие компоненты дают плотные дымовые шлейфы, хотя на таких скоростях этих самых плотных шлейфов быть не может из-за чудовищного разбавления потоком. Но издали их видно прекрасно. Выброшенные частицы дыма растягиваются по следу полета этого каравана кусков и кусочков, наполняя атмосферу широким белым следом. Ударная ионизация порождает ночное зеленоватое свечение этого шлейфа. Из-за неправильной формы фрагментов их торможение стремительно: все, что не сгорело, быстро теряет скорость, а с ней и горячительное действие воздуха. Сверхзвук — сильнейший тормоз! Став в небе, словно разваливающийся на путях поезд, и тут же охладившись высотным морозным дозвуком, полоса фрагментов становится визуально неразличимой, теряет свою форму и строй и переходит в долгое, минут на двадцать, тихое хаотичное рассеивание в воздухе. Если оказаться в нужном месте, можно услышать, как тихо звякнет об ствол березы маленький обгорелый кусочек дюраля. Вот ты и прибыла. Прощай, ступень разведения!

Чтобы вырваться за пределы земной атмосферы, ракетам требуется огромное количество энергии. При сгорании ракетного топлива образуется поток горячих газов, вырывающийся наружу через реактивное сопло. В результате возникает сила, толкающая ракету вперед — так же как воздух, вырывающийся из воздушного шарика, заставляет его лететь в противоположном направлении.

«Спейс Шаттл» для выхода на околоземную орбиту использует сразу две ракеты. Когда корабль оказывается в космосе, ракеты-носители и главный топливный бак отсоединяются и падают обратно на Землю.

«Шаттл» выводит на орбиту спутники, проводит различные научные эксперименты. На обратном пути он планирует и приземляется, как обычный самолет.

  1. Топливные баки содержат около двух миллионов литров (около полумиллиона галлонов) ракетного топлива.
  2. Парашюты замедляют скорость падения ракетных ускорителей на Землю после их отсоединения.
  3. Экипаж “Шаттла” может состоять из семи человек.
  4. Ракетный ускоритель
  5. Грузовой отсек
  6. Спутник
  7. Шасси

Что такое спутник?

Спутником называется любое тело, вращающееся вокруг планеты. Луна — спутник Земли Точно так же спутником Земли становится вышедший на ее орбиту космический аппарат. Искусственные спутники Земли находят самое разнообразное применение. Метеорологические спутники фотографируют облачный покров Земли, что помогает ученым предсказывать погоду. Астрономические спутники передают на землю информацию о звездах и планетах Спутники связи ретранслируют по всему миру
телефонные разговоры
и телевизионные передачи.

На рисунке слева — сделанная спутником фотография бури, которая только что миновала Великобританию и приближается к Скандинавии.

Вы это знали?

Когда астрономы смотрят на звезды, они видят многие из них такими, какими они были тысячи или даже миллионы лет назад. Некоторые из этих звезд, возможно, давно уже не существуют. Свет звезд идет к Земле так долго потому, что расстояние до них невероятно велико.

А мы знаем, что чтобы происходило движение, необходимо воздействие некоторой силы. Тело либо само должно оттолкнуться от чего-нибудь, либо стороннее тело должно толкнуть данное. Это хорошо известно и понятно нам из жизненного опыта.

От чего оттолкнуться в космосе?

У поверхности Земли можно оттолкнуться от поверхности либо от находящихся на ней предметов. Для передвижения по поверхности используют ноги, колеса, гусеницы и так далее. В воде и воздухе можно отталкиваться от самих воды и воздуха, имеющих определенную плотность, и потому позволяющих взаимодействовать с ними. Природа для этого приспособила плавники и крылья.

Человек создал двигатели на основе пропеллеров, которые во много раз увеличивают площадь контакта со средой за счет вращения и позволяют отталкиваться от воды и воздуха. А как быть в случае безвоздушного пространства? От чего отталкиваться в космосе? Там нет воздуха, там ничего нет. Как осуществлять полеты в космосе? Вот тут-то и приходит на помощь закон сохранения импульса и принцип реактивного движения. Разберем подробнее.

Импульс и принцип реактивного движения

Импульс это произведение массы тела на его скорость. Когда тело неподвижно, его скорость равна нулю. Однако тело обладает некоторой массой. При отсутствии сторонних воздействий, если часть массы отделится от тела с некоторой скоростью, то по закону сохранения импульса, остальная часть тела тоже должна приобрести некоторую скорость, чтобы суммарный импульс остался по-прежнему равным нулю.

Причем скорость оставшейся основной части тела будет зависеть от того, с какой скоростью отделится меньшая часть. Чем эта скорость будет выше, тем выше будет и скорость основного тела. Это понятно, если вспомнить поведение тел на льду или в воде.

Если два человека будут находиться рядом, а потом один из них толкнет другого, то он не только придаст тому ускорение, но и сам отлетит назад. И чем сильнее он толкнет кого-либо, тем с большей скоростью отлетит сам.

Наверняка, вам приходилось бывать в
подобной ситуации
, и вы можете представить себе, как это происходит. Так вот,

именно на этом и основано реактивное движение
.

Ракеты, в которых реализован этот принцип, выбрасывают некоторую часть своей массы на большой скорости, вследствие чего сами приобретают некоторое ускорение в противоположном направлении.

Потоки раскаленных газов, возникающие в результате сгорания топлива, выбрасываются через узкие сопла для придания им максимально большой скорости. При этом, на величину массы этих газов уменьшается масса ракеты, и она приобретает некую скорость. Таким образом реализован принцип реактивного движения в физике.

Принцип полета ракеты

В ракетах применяют многоступенчатую систему. Во время полета нижняя ступень, израсходовав весь свой запас топлива, отделяется от ракеты, чтобы уменьшить ее общую массу и облегчить полет.

Количество ступеней уменьшается, пока не остается рабочая часть в виде спутника или иного космического аппарата. Топливо рассчитывают таким образом, чтобы его хватило как раз для выхода на орбиту.

Ракета – средство передвижения человека в воздухе, в атмосфере. Самолеты и другие летательные аппараты также служат для того, чтобы летать. Но они друг от…

Ракета – средство передвижения человека в воздухе, в атмосфере. Самолеты и другие летательные аппараты также служат для того, чтобы летать. Но они друг от друга отличаются. Ракета взлетает, самолеты и аппараты летают. Но законы полета разные. Ракета больше похожа на выпущенный в воздух большой снаряд. Ракета предназначена для полетов в космос. И взлетает она за счет реактивной тяги.

Как движется ракета?За счет реактивной тяги.


Может ли она летать не только в воздухе?
Может. Она может лететь даже в вакууме. В космосе воздуха нет, но ракета, тем не менее, летит. И даже лучше, чем в воздухе.

Работает система полета ракеты по закону Ньютона. Газы в двигателе ускоряются, создается тяга, которая создает силу. С помощью этой силы ракета движется. Чтобы двигаться, нужно от чего-то отталкиваться. Когда едет машина или идет человек, они отталкиваются от земной поверхности и снова на нее опускаются. Получается движение вперед, поскольку действует сила тяги Земли. Ракета поднимается в космос, но обратно не опускается.

С помощью реактивных газов она отталкивается от Земли, но не возвращается назад, преодолевая силу тяги
. Примерно также действуют водные объекты: плавает подводная лодка, кальмар, акула.

Топливо, для того, чтобы ракета взлетела, используют самое разное. Оно может быть жидким и твердым. За счет сжигания топлива ракета поднимается в воздух. После камеры сгорания топлива находятся сопла. Из них извергается сгоревший газ, который поднимает ракету в космос. Поднимающуюся ввысь ракету можно сравнить с извергающимся вулканом. Когда она взлетает в воздух, можно наблюдать большие клубы дыма, запах гари, огонь. Именно как при вулкане или большом взрыве.

Ракета состоит из нескольких ступеней. По ходу ее полета эти ступени отделяются. В самом космосе, уже гораздо легче, летит космический корабль, который выкинул весь лишний груз, то, что было ракетой.

Пример отделения ступеней

Следует отметить то, что самолет в космос вылететь не может.
Воздушный шар
тоже. Из всех известных средств передвижения по воздуху ракета единственная поднимается в космос и может летать за пределами планеты Земля.

Это интересно:ракета не самый известный летательный аппарат на сегодняшний день. Известно, что в космосе когда-то летали виманы. Принцип полета напоминает полет сегодняшней ракеты. Верхнюю часть ракеты напоминает вимана, но она немного другой формы.

Как и почему взлетает ракета

Для того чтобы увидеть, как взлетает ракета, необходимо посмотреть специальные телевизионные репортажи или отыскать соответствующие видеозаписи в интернете. Стать непосредственными свидетелями взлета и собственными глазами с
небольшого расстояния
увидеть, куда направляется аппарат, могут лишь отдельные лица, причастные к данному процессу, при этом они должны находиться на территории космодрома.

Как происходит взлет

Стартовать космический аппарат сам по себе не может, для этого ему необходимо получить команду с пункта управления. Ракета находится в вертикальном положении на космодроме, затем двигатели начинают издавать мощный звук. Сначала внизу появляется яркое пламя внушительных размеров, слышен нарастающий гул. Потом эта ракета взлетает наверх: сначала с относительно небольшой скоростью, затем быстрее. С каждой секундой она отдаляется от Земли все дальше, звук при этом становится сильнее.

Довольно скоро космический аппарат располагается на высоте, на которую не в состоянии подняться как гражданские, так и боевые самолеты. На такой высоте летают только аппараты, предназначенные для работы в просторах Вселенной, находящихся вне границ атмосфер небесных тел. Буквально через минуту взлетающий аппарат оказывается в космосе, то есть в безвоздушном пространстве. Далее он продолжает свой путь в зависимости от маршрута, который был намечен на Земле. Этот аппарат, как и ранее, управляется из командного пункта.

Реактивные двигатели

Звук, который издает ракета при взлете, говорит о том, что она оборудована реактивными двигателями. Моторы приводятся в действие силой, которая возникает в результате появления мощной струи раскаленных газов. Эти газы образуются в специальной камере тогда, когда сгорает топливо. Может показаться невероятным, что они обладают способностью запросто выводить на космическую орбиту ракету весом в несколько тонн, при этом характерный звук слышен на достаточно большом расстоянии от места запуска.

Вместе с тем следует иметь в виду, что воздух, содержащийся в камерах велосипедов или автомобилей, успешно выдерживает массу как людей, управляющих двухколесными
транспортными средствами
, так и водителей машин, а также их пассажиров и грузов. Поэтому нет ничего удивительного в том, что чересчур раскаленный газ, с
огромной силой
вырывающийся из сопла ракеты, способен толкать ее наверх с большой скоростью. Практически после каждого запуска ракеты площадка для ее старта, сооруженная с использованием особо прочных материалов, нуждается в ремонте, ведь ракеты не должны взлететь с поврежденной поверхности.

Третий закон Ньютона

Речь идет о законе, под которым подразумевают закон сохранения импульса. Изначально ракета, неподвижно расположенная на стартовой площадке перед запуском, имеет импульс, равный нулю. После включения двигателей нарастает звук, при сгорании топлива образуются газообразные продукты
высокой температуры
, которые на высокой скорости вырываются из сопла
летательного аппарата
. Это приводит к созданию вектора импульса, который направлен вниз.

Однако существует закон сохранения импульса, согласно которому суммарный импульс, приобретенный взлетающим аппаратом относительно стартовой площадки, должен по-прежнему равняться нулю. Здесь возникает другой вектор импульса, действие которого направлено на уравновешивание изделия по отношению к уходящим газам. Он появляется за счет того, что космический аппарат, который стоял неподвижно, начинает движение. Импульс, направленный вверх, равняется весу изделия, умноженному на его скорость.

В случае если двигатели ракеты достаточно мощные, она набирает скорость быстро. Данной скорости достаточно, чтобы вывести космический корабль на околоземную орбиту в течение довольно непродолжительного времени. Взлетающий аппарат имеет мощность, которая напрямую зависит от заправленного в него топлива. В
советский период
ракетные двигатели работали на авиационном керосине. В настоящее время используется более сложная химическая смесь, которая при сгорании выделяет огромное количество энергии.

Возможно, будет полезно почитать:

  • Тюменское высшее военно-инженерное командное училище имени маршала инженерных войск А
    ;
  • Почему ссср ввязался в гражданскую войну в испании Испанская гражданская война 1936 1939 кратко
    ;
  • Савинов, Пётр Иванович: биография Капитан вов савинов п и танкист ас
    ;
  • Методы решения неопределенных интегралов
    ;
  • Основные проблемы, изучаемые на макроэкономическом уровне
    ;
  • Свинья скорпион карьера и финансы
    ;
  • Как производится расчет пени по налогам: начисление пени, порядок расчета, пример вычислений
    ;
  • Дарение полностью самортизированного объекта ОС
    ;

Частые вопросы

Как ракета взлетает в космос?

Это устройство, работающее по третьему закону Ньютона, функционирует несложно: двигатель сжигает специальное топливо и выбрасывает реактивную струю с высокой скоростью и большим количеством энергии, что создает сильную тягу, приводящую к равномерному ускорению в противоположном направлении.

Как ракета вылетает в космос?

Во время полета ракета выбрасывает из сопла газ, разогретый до температуры свыше 2 000 °С, с сильным ускорением. При сгорании топлива образуется большое количество кинетической энергии, которая приводит в движение молекулы газов. Молекулы начинают перемещаться с довольно внушительной скоростью.

Почему ракета может двигаться в безвоздушном пространстве?

Однако, в безвоздушном пространстве ракета летит даже скорей, чем в воздухе. Истинная причина движения ракеты состоит в том, что когда пороховые газы стремительно вытекают из нее вниз, сама ракета, по закону равенства действия и противодействия, отталкивается вверх.

Откуда взлетают ракеты в космос?

Байконур – это крупнейшая в мире стартовая площадка для запуска ракет. Отсюда был совершен первый полет человека в космос, совершался запуск орбитальных станций Мир и Салют, запускали ракеты среднего, тяжелого и сверхтяжелого класса, искусственные спутники нашей планеты и другие космические летательные аппараты.

Полезные советы

СОВЕТ №1

Изучите основные принципы реактивного движения и работы ракеты, чтобы понять, как она взлетает и движется в космосе.

СОВЕТ №2

Изучите принципы физики, лежащие в основе работы ракетных двигателей, чтобы понять, почему ракеты могут двигаться в вакууме космоса.

СОВЕТ №3

Изучите историю космических полетов и достижений, чтобы понять, как развивалась технология ракетостроения и космических полетов.

Оцените статью
Добавить комментарий